Abdullah Altunhan, Selim Soyturk, Furkan Guldibi, Atinc Tozsin, Abdullatif Aydın, Arif Aydın, Kemal Sarica, Selcuk Guven, Kamran Ahmed
{"title":"人工智能在泌尿系统结石中的应用:关于应用和有效性的系统性综述。","authors":"Abdullah Altunhan, Selim Soyturk, Furkan Guldibi, Atinc Tozsin, Abdullatif Aydın, Arif Aydın, Kemal Sarica, Selcuk Guven, Kamran Ahmed","doi":"10.1007/s00345-024-05268-8","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Mirroring global trends, artificial intelligence advances in medicine, notably urolithiasis. It promises accurate diagnoses, effective treatments, and forecasting epidemiological risks and stone passage. This systematic review aims to identify the types of AI models utilised in urolithiasis studies and evaluate their effectiveness.</p><p><strong>Methods: </strong>The study was registered with PROSPERO. Pubmed, EMBASE, Google Scholar, and Cochrane Library databases were searched for relevant literature, using keywords such as 'urology,' 'artificial intelligence,' and 'machine learning.' Only original AI studies on urolithiasis were included, excluding reviews, unrelated studies, and non-English articles. PRISMA guidelines followed.</p><p><strong>Results: </strong>Out of 4851 studies initially identified, 71 were included for comprehensive analysis in the application of AI in urolithiasis. AI showed notable proficiency in stone composition analysis in 12 studies, achieving an average precision of 88.2% (Range 0.65-1). In the domain of stone detection, the average precision remarkably reached 96.9%. AI's accuracy rate in predicting spontaneous ureteral stone passage averaged 87%, while its performance in treatment modalities such as PCNL and SWL achieved average accuracy rates of 82% and 83%, respectively. These AI models were generally superior to traditional diagnostic and treatment methods.</p><p><strong>Conclusion: </strong>The consolidated data underscores AI's increasing significance in urolithiasis management. Across various dimensions-diagnosis, monitoring, and treatment-AI outperformed conventional methodologies. High precision and accuracy rates indicate that AI is not only effective but also poised for integration into routine clinical practice. Further research is warranted to establish AI's long-term utility and to validate its role as a standard tool in urological care.</p>","PeriodicalId":23954,"journal":{"name":"World Journal of Urology","volume":"42 1","pages":"579"},"PeriodicalIF":2.8000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Artificial intelligence in urolithiasis: a systematic review of utilization and effectiveness.\",\"authors\":\"Abdullah Altunhan, Selim Soyturk, Furkan Guldibi, Atinc Tozsin, Abdullatif Aydın, Arif Aydın, Kemal Sarica, Selcuk Guven, Kamran Ahmed\",\"doi\":\"10.1007/s00345-024-05268-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>Mirroring global trends, artificial intelligence advances in medicine, notably urolithiasis. It promises accurate diagnoses, effective treatments, and forecasting epidemiological risks and stone passage. This systematic review aims to identify the types of AI models utilised in urolithiasis studies and evaluate their effectiveness.</p><p><strong>Methods: </strong>The study was registered with PROSPERO. Pubmed, EMBASE, Google Scholar, and Cochrane Library databases were searched for relevant literature, using keywords such as 'urology,' 'artificial intelligence,' and 'machine learning.' Only original AI studies on urolithiasis were included, excluding reviews, unrelated studies, and non-English articles. PRISMA guidelines followed.</p><p><strong>Results: </strong>Out of 4851 studies initially identified, 71 were included for comprehensive analysis in the application of AI in urolithiasis. AI showed notable proficiency in stone composition analysis in 12 studies, achieving an average precision of 88.2% (Range 0.65-1). In the domain of stone detection, the average precision remarkably reached 96.9%. AI's accuracy rate in predicting spontaneous ureteral stone passage averaged 87%, while its performance in treatment modalities such as PCNL and SWL achieved average accuracy rates of 82% and 83%, respectively. These AI models were generally superior to traditional diagnostic and treatment methods.</p><p><strong>Conclusion: </strong>The consolidated data underscores AI's increasing significance in urolithiasis management. Across various dimensions-diagnosis, monitoring, and treatment-AI outperformed conventional methodologies. High precision and accuracy rates indicate that AI is not only effective but also poised for integration into routine clinical practice. Further research is warranted to establish AI's long-term utility and to validate its role as a standard tool in urological care.</p>\",\"PeriodicalId\":23954,\"journal\":{\"name\":\"World Journal of Urology\",\"volume\":\"42 1\",\"pages\":\"579\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"World Journal of Urology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s00345-024-05268-8\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"UROLOGY & NEPHROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"World Journal of Urology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00345-024-05268-8","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"UROLOGY & NEPHROLOGY","Score":null,"Total":0}
Artificial intelligence in urolithiasis: a systematic review of utilization and effectiveness.
Purpose: Mirroring global trends, artificial intelligence advances in medicine, notably urolithiasis. It promises accurate diagnoses, effective treatments, and forecasting epidemiological risks and stone passage. This systematic review aims to identify the types of AI models utilised in urolithiasis studies and evaluate their effectiveness.
Methods: The study was registered with PROSPERO. Pubmed, EMBASE, Google Scholar, and Cochrane Library databases were searched for relevant literature, using keywords such as 'urology,' 'artificial intelligence,' and 'machine learning.' Only original AI studies on urolithiasis were included, excluding reviews, unrelated studies, and non-English articles. PRISMA guidelines followed.
Results: Out of 4851 studies initially identified, 71 were included for comprehensive analysis in the application of AI in urolithiasis. AI showed notable proficiency in stone composition analysis in 12 studies, achieving an average precision of 88.2% (Range 0.65-1). In the domain of stone detection, the average precision remarkably reached 96.9%. AI's accuracy rate in predicting spontaneous ureteral stone passage averaged 87%, while its performance in treatment modalities such as PCNL and SWL achieved average accuracy rates of 82% and 83%, respectively. These AI models were generally superior to traditional diagnostic and treatment methods.
Conclusion: The consolidated data underscores AI's increasing significance in urolithiasis management. Across various dimensions-diagnosis, monitoring, and treatment-AI outperformed conventional methodologies. High precision and accuracy rates indicate that AI is not only effective but also poised for integration into routine clinical practice. Further research is warranted to establish AI's long-term utility and to validate its role as a standard tool in urological care.
期刊介绍:
The WORLD JOURNAL OF UROLOGY conveys regularly the essential results of urological research and their practical and clinical relevance to a broad audience of urologists in research and clinical practice. In order to guarantee a balanced program, articles are published to reflect the developments in all fields of urology on an internationally advanced level. Each issue treats a main topic in review articles of invited international experts. Free papers are unrelated articles to the main topic.