{"title":"操纵酿酒酵母中的富核丝氨酸蛋白 Srp40p 可提高异丁醇产量。","authors":"Aili Zhang, Yunpeng Ding, Wenju Shao","doi":"10.1007/s11274-024-04150-4","DOIUrl":null,"url":null,"abstract":"<p><p>Isobutanol represents a promising second-generation biofuel. Saccharomyces cerevisiae can produce minor quantities of isobutanol as a byproduct. Increasing yeast tolerance to isobutanol is a crucial step toward achieving higher production levels. Previously, we discovered that expression of the srp40 gene could increase S. cerevisiae isobutanol tolerance. In this study, we explored the impact of overexpressing srp40 on isobutanol production. We used the CEN/ARS plasmid YCplac22-srp40 to overexpress srp40 in S. cerevisiae strain W303-1A. The resulting strain was named W303-1A-srp40. We subsequently performed metabolic engineering of isobutanol synthesis by overexpressing ILV2, ILV3 and ARO10 in W303-1 A-srp40. The resulting strain was named 303V2V3A10-22-srp40. Our findings revealed that, compared with the control strain, the 303V2V3A10-22-srp40 strain amplified isobutanol production by 50%. A transcriptome analysis revealed that upregulated genes associated with aminoacyl-tRNA biosynthesis or downregulated genes associated with phenylalanine, tyrosine, and tryptophan biosynthesis might yield increased isobutanol production in 303V2V3A10-22-srp40. Moreover, the decreases in the biosynthesis of amino acids and oxidative phosphorylation might play pivotal roles in the increased isobutanol tolerance of strain W303-1A-srp40. In summary, the overexpression of srp40 could increase isobutanol production and tolerance in S. cerevisiae. This study offers novel insights regarding strategies for increasing isobutanol production.</p>","PeriodicalId":23703,"journal":{"name":"World journal of microbiology & biotechnology","volume":"40 11","pages":"349"},"PeriodicalIF":4.0000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Manipulating the nucleolar serine-rich protein Srp40p in Saccharomyces cerevisiae may improve isobutanol production.\",\"authors\":\"Aili Zhang, Yunpeng Ding, Wenju Shao\",\"doi\":\"10.1007/s11274-024-04150-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Isobutanol represents a promising second-generation biofuel. Saccharomyces cerevisiae can produce minor quantities of isobutanol as a byproduct. Increasing yeast tolerance to isobutanol is a crucial step toward achieving higher production levels. Previously, we discovered that expression of the srp40 gene could increase S. cerevisiae isobutanol tolerance. In this study, we explored the impact of overexpressing srp40 on isobutanol production. We used the CEN/ARS plasmid YCplac22-srp40 to overexpress srp40 in S. cerevisiae strain W303-1A. The resulting strain was named W303-1A-srp40. We subsequently performed metabolic engineering of isobutanol synthesis by overexpressing ILV2, ILV3 and ARO10 in W303-1 A-srp40. The resulting strain was named 303V2V3A10-22-srp40. Our findings revealed that, compared with the control strain, the 303V2V3A10-22-srp40 strain amplified isobutanol production by 50%. A transcriptome analysis revealed that upregulated genes associated with aminoacyl-tRNA biosynthesis or downregulated genes associated with phenylalanine, tyrosine, and tryptophan biosynthesis might yield increased isobutanol production in 303V2V3A10-22-srp40. Moreover, the decreases in the biosynthesis of amino acids and oxidative phosphorylation might play pivotal roles in the increased isobutanol tolerance of strain W303-1A-srp40. In summary, the overexpression of srp40 could increase isobutanol production and tolerance in S. cerevisiae. This study offers novel insights regarding strategies for increasing isobutanol production.</p>\",\"PeriodicalId\":23703,\"journal\":{\"name\":\"World journal of microbiology & biotechnology\",\"volume\":\"40 11\",\"pages\":\"349\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"World journal of microbiology & biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11274-024-04150-4\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"World journal of microbiology & biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11274-024-04150-4","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Manipulating the nucleolar serine-rich protein Srp40p in Saccharomyces cerevisiae may improve isobutanol production.
Isobutanol represents a promising second-generation biofuel. Saccharomyces cerevisiae can produce minor quantities of isobutanol as a byproduct. Increasing yeast tolerance to isobutanol is a crucial step toward achieving higher production levels. Previously, we discovered that expression of the srp40 gene could increase S. cerevisiae isobutanol tolerance. In this study, we explored the impact of overexpressing srp40 on isobutanol production. We used the CEN/ARS plasmid YCplac22-srp40 to overexpress srp40 in S. cerevisiae strain W303-1A. The resulting strain was named W303-1A-srp40. We subsequently performed metabolic engineering of isobutanol synthesis by overexpressing ILV2, ILV3 and ARO10 in W303-1 A-srp40. The resulting strain was named 303V2V3A10-22-srp40. Our findings revealed that, compared with the control strain, the 303V2V3A10-22-srp40 strain amplified isobutanol production by 50%. A transcriptome analysis revealed that upregulated genes associated with aminoacyl-tRNA biosynthesis or downregulated genes associated with phenylalanine, tyrosine, and tryptophan biosynthesis might yield increased isobutanol production in 303V2V3A10-22-srp40. Moreover, the decreases in the biosynthesis of amino acids and oxidative phosphorylation might play pivotal roles in the increased isobutanol tolerance of strain W303-1A-srp40. In summary, the overexpression of srp40 could increase isobutanol production and tolerance in S. cerevisiae. This study offers novel insights regarding strategies for increasing isobutanol production.
期刊介绍:
World Journal of Microbiology and Biotechnology publishes research papers and review articles on all aspects of Microbiology and Microbial Biotechnology.
Since its foundation, the Journal has provided a forum for research work directed toward finding microbiological and biotechnological solutions to global problems. As many of these problems, including crop productivity, public health and waste management, have major impacts in the developing world, the Journal especially reports on advances for and from developing regions.
Some topics are not within the scope of the Journal. Please do not submit your manuscript if it falls into one of the following categories:
· Virology
· Simple isolation of microbes from local sources
· Simple descriptions of an environment or reports on a procedure
· Veterinary, agricultural and clinical topics in which the main focus is not on a microorganism
· Data reporting on host response to microbes
· Optimization of a procedure
· Description of the biological effects of not fully identified compounds or undefined extracts of natural origin
· Data on not fully purified enzymes or procedures in which they are applied
All articles published in the Journal are independently refereed.