Lina Mattsson, Hanna Farnelid, Maurice Hirwa, Martin Olofsson, Fredrik Svensson, Catherine Legrand, Elin Lindehoff
{"title":"北欧条件下室外微藻多元养殖的季节性脱氮。","authors":"Lina Mattsson, Hanna Farnelid, Maurice Hirwa, Martin Olofsson, Fredrik Svensson, Catherine Legrand, Elin Lindehoff","doi":"10.1002/wer.11142","DOIUrl":null,"url":null,"abstract":"<p><p>Microalgal solutions to clean waste streams and produce biomass were evaluated in Nordic conditions during winter, spring, and autumn in Southeast Sweden. The study investigated nitrogen (N) removal, biomass quality, and safety by treating industrial leachate water with a polyculture of local microalgae and bacteria in open raceway ponds, supplied with industrial CO<sub>2</sub> effluent. Total N (TN) removal was higher in spring (1.5 g<sup>-2</sup>d<sup>-1</sup>), due to beneficial light conditions compared to winter and autumn (0.1 and 0.09 g<sup>-2</sup>d<sup>-1</sup>). Light, TN, and N species influenced the microalgal community (dominated by Chlorophyta), while the bacterial community remained stable throughout seasons with a large proportion of cyanobacteria. Winter conditions promoted biomass protein (19.6-26.7%) whereas lipids and carbohydrates were highest during spring (11.4-18.4 and 15.4-19.8%). Biomass toxin and metal content were below safety levels for fodder, but due to the potential presence of toxic strains, biofuels or fertilizer could be suitable applications for the algal biomass. PRACTITIONER POINTS: Microalgal removal of nitrogen from leachate water was evaluated in Nordic conditions during winter, spring, and autumn. Total nitrogen removal was highest in spring (1.5 g<sup>-2</sup>d<sup>-1</sup>), due to beneficial light conditions for autotrophic growth. Use of local polyculture made the cultivation more stable on a seasonal (light) and short-term (N-species changes) scale. Toxic elements in produced algal biomass were below legal thresholds for upcycling.</p>","PeriodicalId":23621,"journal":{"name":"Water Environment Research","volume":"96 10","pages":"e11142"},"PeriodicalIF":2.5000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Seasonal nitrogen removal in an outdoor microalgal polyculture at Nordic conditions.\",\"authors\":\"Lina Mattsson, Hanna Farnelid, Maurice Hirwa, Martin Olofsson, Fredrik Svensson, Catherine Legrand, Elin Lindehoff\",\"doi\":\"10.1002/wer.11142\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Microalgal solutions to clean waste streams and produce biomass were evaluated in Nordic conditions during winter, spring, and autumn in Southeast Sweden. The study investigated nitrogen (N) removal, biomass quality, and safety by treating industrial leachate water with a polyculture of local microalgae and bacteria in open raceway ponds, supplied with industrial CO<sub>2</sub> effluent. Total N (TN) removal was higher in spring (1.5 g<sup>-2</sup>d<sup>-1</sup>), due to beneficial light conditions compared to winter and autumn (0.1 and 0.09 g<sup>-2</sup>d<sup>-1</sup>). Light, TN, and N species influenced the microalgal community (dominated by Chlorophyta), while the bacterial community remained stable throughout seasons with a large proportion of cyanobacteria. Winter conditions promoted biomass protein (19.6-26.7%) whereas lipids and carbohydrates were highest during spring (11.4-18.4 and 15.4-19.8%). Biomass toxin and metal content were below safety levels for fodder, but due to the potential presence of toxic strains, biofuels or fertilizer could be suitable applications for the algal biomass. PRACTITIONER POINTS: Microalgal removal of nitrogen from leachate water was evaluated in Nordic conditions during winter, spring, and autumn. Total nitrogen removal was highest in spring (1.5 g<sup>-2</sup>d<sup>-1</sup>), due to beneficial light conditions for autotrophic growth. Use of local polyculture made the cultivation more stable on a seasonal (light) and short-term (N-species changes) scale. Toxic elements in produced algal biomass were below legal thresholds for upcycling.</p>\",\"PeriodicalId\":23621,\"journal\":{\"name\":\"Water Environment Research\",\"volume\":\"96 10\",\"pages\":\"e11142\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Water Environment Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1002/wer.11142\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Environment Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1002/wer.11142","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Seasonal nitrogen removal in an outdoor microalgal polyculture at Nordic conditions.
Microalgal solutions to clean waste streams and produce biomass were evaluated in Nordic conditions during winter, spring, and autumn in Southeast Sweden. The study investigated nitrogen (N) removal, biomass quality, and safety by treating industrial leachate water with a polyculture of local microalgae and bacteria in open raceway ponds, supplied with industrial CO2 effluent. Total N (TN) removal was higher in spring (1.5 g-2d-1), due to beneficial light conditions compared to winter and autumn (0.1 and 0.09 g-2d-1). Light, TN, and N species influenced the microalgal community (dominated by Chlorophyta), while the bacterial community remained stable throughout seasons with a large proportion of cyanobacteria. Winter conditions promoted biomass protein (19.6-26.7%) whereas lipids and carbohydrates were highest during spring (11.4-18.4 and 15.4-19.8%). Biomass toxin and metal content were below safety levels for fodder, but due to the potential presence of toxic strains, biofuels or fertilizer could be suitable applications for the algal biomass. PRACTITIONER POINTS: Microalgal removal of nitrogen from leachate water was evaluated in Nordic conditions during winter, spring, and autumn. Total nitrogen removal was highest in spring (1.5 g-2d-1), due to beneficial light conditions for autotrophic growth. Use of local polyculture made the cultivation more stable on a seasonal (light) and short-term (N-species changes) scale. Toxic elements in produced algal biomass were below legal thresholds for upcycling.
期刊介绍:
Published since 1928, Water Environment Research (WER) is an international multidisciplinary water resource management journal for the dissemination of fundamental and applied research in all scientific and technical areas related to water quality and resource recovery. WER''s goal is to foster communication and interdisciplinary research between water sciences and related fields such as environmental toxicology, agriculture, public and occupational health, microbiology, and ecology. In addition to original research articles, short communications, case studies, reviews, and perspectives are encouraged.