{"title":"针对耐多药肺炎克雷伯氏菌的新型噬菌体pK3-24的特征及其对鼠胆幼虫的疗效。","authors":"","doi":"10.1016/j.virusres.2024.199481","DOIUrl":null,"url":null,"abstract":"<div><div><em>Klebsiella pneumoniae</em> is a common, conditionally pathogenic bacterium that often has a multidrug-resistant phenotype, leading to failure of antibiotic therapies. It can therefore induce serious diseases, including community-acquired pneumonia and bloodstream infections. As an emerging alternative to antibiotics, phages are considered key to solving the problem of drug-resistant bacterial infections. Here, we report a novel phage, pK3–24, that mainly targets ST447 <em>K. pneumoniae</em>. Phage pK3–24 is a T7-like short-tailed phage with a fast adsorption capacity that forms translucent plaques with halos on bacterial lawns. The optimal multiplicity of infection (MOI) is 0.01, and the average burst size is 50 PFU/mL. Phage pK3–24 shows environmental stability, surviving at below 50 °C and at pH values of 6–10. It has a double-stranded DNA genome of 40,327 bp and carries no antibiotic-resistance, virulence, or lysogeny genes. Phylogenetic analysis assigned phage pK3–24 to the genus <em>Przondovirus</em> as a new species. Phage pK3–24 inhibited the production of biofilm. Moreover, treatment with pK3–24 at doses with an MOI > 1 effectively reduced the mortality of <em>Galleria mellonella</em> larvae infected with ST447 <em>K. pneumoniae</em>.</div></div>","PeriodicalId":23483,"journal":{"name":"Virus research","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterization of novel phage pK3–24 targeting multidrug-resistant Klebsiella pneumoniae and its therapeutic efficacy in Galleria mellonella larvae\",\"authors\":\"\",\"doi\":\"10.1016/j.virusres.2024.199481\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div><em>Klebsiella pneumoniae</em> is a common, conditionally pathogenic bacterium that often has a multidrug-resistant phenotype, leading to failure of antibiotic therapies. It can therefore induce serious diseases, including community-acquired pneumonia and bloodstream infections. As an emerging alternative to antibiotics, phages are considered key to solving the problem of drug-resistant bacterial infections. Here, we report a novel phage, pK3–24, that mainly targets ST447 <em>K. pneumoniae</em>. Phage pK3–24 is a T7-like short-tailed phage with a fast adsorption capacity that forms translucent plaques with halos on bacterial lawns. The optimal multiplicity of infection (MOI) is 0.01, and the average burst size is 50 PFU/mL. Phage pK3–24 shows environmental stability, surviving at below 50 °C and at pH values of 6–10. It has a double-stranded DNA genome of 40,327 bp and carries no antibiotic-resistance, virulence, or lysogeny genes. Phylogenetic analysis assigned phage pK3–24 to the genus <em>Przondovirus</em> as a new species. Phage pK3–24 inhibited the production of biofilm. Moreover, treatment with pK3–24 at doses with an MOI > 1 effectively reduced the mortality of <em>Galleria mellonella</em> larvae infected with ST447 <em>K. pneumoniae</em>.</div></div>\",\"PeriodicalId\":23483,\"journal\":{\"name\":\"Virus research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Virus research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0168170224001746\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"VIROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Virus research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168170224001746","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"VIROLOGY","Score":null,"Total":0}
Characterization of novel phage pK3–24 targeting multidrug-resistant Klebsiella pneumoniae and its therapeutic efficacy in Galleria mellonella larvae
Klebsiella pneumoniae is a common, conditionally pathogenic bacterium that often has a multidrug-resistant phenotype, leading to failure of antibiotic therapies. It can therefore induce serious diseases, including community-acquired pneumonia and bloodstream infections. As an emerging alternative to antibiotics, phages are considered key to solving the problem of drug-resistant bacterial infections. Here, we report a novel phage, pK3–24, that mainly targets ST447 K. pneumoniae. Phage pK3–24 is a T7-like short-tailed phage with a fast adsorption capacity that forms translucent plaques with halos on bacterial lawns. The optimal multiplicity of infection (MOI) is 0.01, and the average burst size is 50 PFU/mL. Phage pK3–24 shows environmental stability, surviving at below 50 °C and at pH values of 6–10. It has a double-stranded DNA genome of 40,327 bp and carries no antibiotic-resistance, virulence, or lysogeny genes. Phylogenetic analysis assigned phage pK3–24 to the genus Przondovirus as a new species. Phage pK3–24 inhibited the production of biofilm. Moreover, treatment with pK3–24 at doses with an MOI > 1 effectively reduced the mortality of Galleria mellonella larvae infected with ST447 K. pneumoniae.
期刊介绍:
Virus Research provides a means of fast publication for original papers on fundamental research in virology. Contributions on new developments concerning virus structure, replication, pathogenesis and evolution are encouraged. These include reports describing virus morphology, the function and antigenic analysis of virus structural components, virus genome structure and expression, analysis on virus replication processes, virus evolution in connection with antiviral interventions, effects of viruses on their host cells, particularly on the immune system, and the pathogenesis of virus infections, including oncogene activation and transduction.