Cesar V Borlongan, Jea-Young Lee, Francesco D'Egidio, Matthieu de Kalbermatten, Ibon Garitaonandia, Raphael Guzman
{"title":"中风患者干细胞的鼻脑传递:细胞外囊泡的作用。","authors":"Cesar V Borlongan, Jea-Young Lee, Francesco D'Egidio, Matthieu de Kalbermatten, Ibon Garitaonandia, Raphael Guzman","doi":"10.1093/stcltm/szae072","DOIUrl":null,"url":null,"abstract":"<p><p>Stem cell transplantation offers a promising therapy that can be administered days, weeks, or months after a stroke. We recognize 2 major mitigating factors that remain unresolved in cell therapy for stroke, notably: (1) well-defined donor stem cells and (2) mechanism of action. To this end, we advance the use of ProtheraCytes, a population of non-adherent CD34+ cells derived from human peripheral blood and umbilical cord blood, which have been processed under good manufacturing practice, with testing completed in a phase 2 clinical trial in post-acute myocardial infarction (NCT02669810). We also reveal a novel mechanism whereby ProtheraCytes secrete growth factors and extracellular vesicles (EVs) that are associated with angiogenesis and vasculogenesis. Our recent data revealed that intranasal transplantation of ProtheraCytes at 3 days after experimentally induced stroke in adult rats reduced stroke-induced behavioral deficits and histological damage up to 28 days post-stroke. Moreover, we detected upregulation of human CD63+ EVs in the ischemic brains of stroke animals that were transplanted with ProtheraCytes, which correlated with increased levels of DCX-labeled neurogenesis and VEGFR1-associated angiogenesis and vasculogenesis, as well as reduced Iba1-marked inflammation. Altogether, these findings overcome key laboratory-to-clinic translational hurdles, namely the identification of well-characterized, clinical grade ProtheraCytes and the elucidation of a potential CD63+ EV-mediated regenerative mechanism of action. We envision that additional translational studies will guide the development of clinical trials for intranasal ProtheraCytes allografts in stroke patients, with CD63 serving as a critical biomarker.</p>","PeriodicalId":21986,"journal":{"name":"Stem Cells Translational Medicine","volume":" ","pages":"1043-1052"},"PeriodicalIF":5.4000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11555476/pdf/","citationCount":"0","resultStr":"{\"title\":\"Nose-to-brain delivery of stem cells in stroke: the role of extracellular vesicles.\",\"authors\":\"Cesar V Borlongan, Jea-Young Lee, Francesco D'Egidio, Matthieu de Kalbermatten, Ibon Garitaonandia, Raphael Guzman\",\"doi\":\"10.1093/stcltm/szae072\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Stem cell transplantation offers a promising therapy that can be administered days, weeks, or months after a stroke. We recognize 2 major mitigating factors that remain unresolved in cell therapy for stroke, notably: (1) well-defined donor stem cells and (2) mechanism of action. To this end, we advance the use of ProtheraCytes, a population of non-adherent CD34+ cells derived from human peripheral blood and umbilical cord blood, which have been processed under good manufacturing practice, with testing completed in a phase 2 clinical trial in post-acute myocardial infarction (NCT02669810). We also reveal a novel mechanism whereby ProtheraCytes secrete growth factors and extracellular vesicles (EVs) that are associated with angiogenesis and vasculogenesis. Our recent data revealed that intranasal transplantation of ProtheraCytes at 3 days after experimentally induced stroke in adult rats reduced stroke-induced behavioral deficits and histological damage up to 28 days post-stroke. Moreover, we detected upregulation of human CD63+ EVs in the ischemic brains of stroke animals that were transplanted with ProtheraCytes, which correlated with increased levels of DCX-labeled neurogenesis and VEGFR1-associated angiogenesis and vasculogenesis, as well as reduced Iba1-marked inflammation. Altogether, these findings overcome key laboratory-to-clinic translational hurdles, namely the identification of well-characterized, clinical grade ProtheraCytes and the elucidation of a potential CD63+ EV-mediated regenerative mechanism of action. We envision that additional translational studies will guide the development of clinical trials for intranasal ProtheraCytes allografts in stroke patients, with CD63 serving as a critical biomarker.</p>\",\"PeriodicalId\":21986,\"journal\":{\"name\":\"Stem Cells Translational Medicine\",\"volume\":\" \",\"pages\":\"1043-1052\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11555476/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stem Cells Translational Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1093/stcltm/szae072\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL & TISSUE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stem Cells Translational Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/stcltm/szae072","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
Nose-to-brain delivery of stem cells in stroke: the role of extracellular vesicles.
Stem cell transplantation offers a promising therapy that can be administered days, weeks, or months after a stroke. We recognize 2 major mitigating factors that remain unresolved in cell therapy for stroke, notably: (1) well-defined donor stem cells and (2) mechanism of action. To this end, we advance the use of ProtheraCytes, a population of non-adherent CD34+ cells derived from human peripheral blood and umbilical cord blood, which have been processed under good manufacturing practice, with testing completed in a phase 2 clinical trial in post-acute myocardial infarction (NCT02669810). We also reveal a novel mechanism whereby ProtheraCytes secrete growth factors and extracellular vesicles (EVs) that are associated with angiogenesis and vasculogenesis. Our recent data revealed that intranasal transplantation of ProtheraCytes at 3 days after experimentally induced stroke in adult rats reduced stroke-induced behavioral deficits and histological damage up to 28 days post-stroke. Moreover, we detected upregulation of human CD63+ EVs in the ischemic brains of stroke animals that were transplanted with ProtheraCytes, which correlated with increased levels of DCX-labeled neurogenesis and VEGFR1-associated angiogenesis and vasculogenesis, as well as reduced Iba1-marked inflammation. Altogether, these findings overcome key laboratory-to-clinic translational hurdles, namely the identification of well-characterized, clinical grade ProtheraCytes and the elucidation of a potential CD63+ EV-mediated regenerative mechanism of action. We envision that additional translational studies will guide the development of clinical trials for intranasal ProtheraCytes allografts in stroke patients, with CD63 serving as a critical biomarker.
期刊介绍:
STEM CELLS Translational Medicine is a monthly, peer-reviewed, largely online, open access journal.
STEM CELLS Translational Medicine works to advance the utilization of cells for clinical therapy. By bridging stem cell molecular and biological research and helping speed translations of emerging lab discoveries into clinical trials, STEM CELLS Translational Medicine will help move applications of these critical investigations closer to accepted best patient practices and ultimately improve outcomes.
The journal encourages original research articles and concise reviews describing laboratory investigations of stem cells, including their characterization and manipulation, and the translation of their clinical aspects of from the bench to patient care. STEM CELLS Translational Medicine covers all aspects of translational cell studies, including bench research, first-in-human case studies, and relevant clinical trials.