{"title":"植物修复:解决重金属污染的可持续方法。","authors":"Abhijit Kumar, Mishika Dadhwal, Gunjan Mukherjee, Apeksha Srivastava, Saurabh Gupta, Vishal Ahuja","doi":"10.1155/2024/3909400","DOIUrl":null,"url":null,"abstract":"<p><p>Rapid industrialization, mining, and other anthropogenic activities have poisoned our environment with heavy metals, negatively impacting all forms of life. Heavy metal pollution causes physiological and neurological disorders, as heavy metals are endocrine disrupters, carcinogenic, and teratogenic. Therefore, it becomes mandatory to address the challenge of heavy metal contamination on a global scale. Physical and chemical approaches have been employed for pollutant removal and detoxification, but these methods cannot be adopted universally due to high cost, labor intensiveness, and possible negative impact on natural microflora. Phytoremediation is one of the preferred and safest approaches for environmental management due to its high efficiency and low cost of investment. The plant can uptake the pollutants and heavy metals from water and soil through an intense root network via rhizofiltration and process via phytostabilization, phytovolatilization, and accumulation. At a cellular level, the phytoremediation process relies on natural mechanisms of plant cells, e.g., absorption, transpiration, intracellular storage, and accumulation to counter the detrimental effects of pollutants. It is widely accepted because of its novelty, low cost, and high efficiency; however, the process is comparatively slower. In addition, plants can store pollutants for a long time but again become a challenge at the end of the life cycle. The current review summarizes phytoremediation as a potential cure for heavy metal pollutants, released from natural as well as anthropogenic sources. It will provide insight into the advancement and evolution of advanced techniques like nanoremediation that can improve the rate of phytoremediation, along with making it sustainable, cost-effective, and economically viable.</p>","PeriodicalId":21726,"journal":{"name":"Scientifica","volume":"2024 ","pages":"3909400"},"PeriodicalIF":2.3000,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11490348/pdf/","citationCount":"0","resultStr":"{\"title\":\"Phytoremediation: Sustainable Approach for Heavy Metal Pollution.\",\"authors\":\"Abhijit Kumar, Mishika Dadhwal, Gunjan Mukherjee, Apeksha Srivastava, Saurabh Gupta, Vishal Ahuja\",\"doi\":\"10.1155/2024/3909400\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Rapid industrialization, mining, and other anthropogenic activities have poisoned our environment with heavy metals, negatively impacting all forms of life. Heavy metal pollution causes physiological and neurological disorders, as heavy metals are endocrine disrupters, carcinogenic, and teratogenic. Therefore, it becomes mandatory to address the challenge of heavy metal contamination on a global scale. Physical and chemical approaches have been employed for pollutant removal and detoxification, but these methods cannot be adopted universally due to high cost, labor intensiveness, and possible negative impact on natural microflora. Phytoremediation is one of the preferred and safest approaches for environmental management due to its high efficiency and low cost of investment. The plant can uptake the pollutants and heavy metals from water and soil through an intense root network via rhizofiltration and process via phytostabilization, phytovolatilization, and accumulation. At a cellular level, the phytoremediation process relies on natural mechanisms of plant cells, e.g., absorption, transpiration, intracellular storage, and accumulation to counter the detrimental effects of pollutants. It is widely accepted because of its novelty, low cost, and high efficiency; however, the process is comparatively slower. In addition, plants can store pollutants for a long time but again become a challenge at the end of the life cycle. The current review summarizes phytoremediation as a potential cure for heavy metal pollutants, released from natural as well as anthropogenic sources. It will provide insight into the advancement and evolution of advanced techniques like nanoremediation that can improve the rate of phytoremediation, along with making it sustainable, cost-effective, and economically viable.</p>\",\"PeriodicalId\":21726,\"journal\":{\"name\":\"Scientifica\",\"volume\":\"2024 \",\"pages\":\"3909400\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11490348/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientifica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2024/3909400\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientifica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2024/3909400","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
Phytoremediation: Sustainable Approach for Heavy Metal Pollution.
Rapid industrialization, mining, and other anthropogenic activities have poisoned our environment with heavy metals, negatively impacting all forms of life. Heavy metal pollution causes physiological and neurological disorders, as heavy metals are endocrine disrupters, carcinogenic, and teratogenic. Therefore, it becomes mandatory to address the challenge of heavy metal contamination on a global scale. Physical and chemical approaches have been employed for pollutant removal and detoxification, but these methods cannot be adopted universally due to high cost, labor intensiveness, and possible negative impact on natural microflora. Phytoremediation is one of the preferred and safest approaches for environmental management due to its high efficiency and low cost of investment. The plant can uptake the pollutants and heavy metals from water and soil through an intense root network via rhizofiltration and process via phytostabilization, phytovolatilization, and accumulation. At a cellular level, the phytoremediation process relies on natural mechanisms of plant cells, e.g., absorption, transpiration, intracellular storage, and accumulation to counter the detrimental effects of pollutants. It is widely accepted because of its novelty, low cost, and high efficiency; however, the process is comparatively slower. In addition, plants can store pollutants for a long time but again become a challenge at the end of the life cycle. The current review summarizes phytoremediation as a potential cure for heavy metal pollutants, released from natural as well as anthropogenic sources. It will provide insight into the advancement and evolution of advanced techniques like nanoremediation that can improve the rate of phytoremediation, along with making it sustainable, cost-effective, and economically viable.
期刊介绍:
Scientifica is a peer-reviewed, Open Access journal that publishes research articles, review articles, and clinical studies covering a wide range of subjects in the life sciences, environmental sciences, health sciences, and medicine. The journal is divided into the 65 subject areas.