新型 D 环融合甾体 N(2)-取代-1,2,3-三唑的合成与生物学评价。

IF 4.1 4区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Branislava Tenjović, Sofija Bekić, Andjelka Ćelić, Edward Petri, Julia Scholda, Florian Kopp, Marija Sakač, Andrea Nikolić
{"title":"新型 D 环融合甾体 N(2)-取代-1,2,3-三唑的合成与生物学评价。","authors":"Branislava Tenjović, Sofija Bekić, Andjelka Ćelić, Edward Petri, Julia Scholda, Florian Kopp, Marija Sakač, Andrea Nikolić","doi":"10.1039/d4md00297k","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, a series of 13 new D-ring fused steroidal <i>N</i>(2)-substituted-1,2,3-triazoles were synthesized, characterized and evaluated for their biological activities. The relative binding affinities of the synthesized compounds for the ligand-binding domains of estrogen receptors α and β, androgen receptor and glucocorticoid receptor demonstrated that androstane derivatives 3a and 3h and estratriene derivative 4e showed highly specific and strong binding affinity for estrogen receptor β, while 3b, 3e, 4a and 4b displayed high binding affinity for the glucocorticoid receptor. The synthesized compounds were tested for their ability to inhibit aldo-keto reductases 1C3 and 1C4 <i>in vitro</i> by monitoring NADPH consumption using fluorescence spectroscopy. The most potent aldo-keto reductase 1C3 inhibitors were compounds 3h (71.17%) and 3f (69.9%). Moreover, a molecular docking study was carried out for compounds 3f and 3h against aldo-keto reductase 1C3 and results showed that compounds 3h and 3f could bind in the same site and orientation as EM1404. However, polar atoms in the triazole group enable additional hydrogen bonding deeper in SP1 with Tyr319, Tyr216 and the NADP<sup>+</sup> cofactor, which are not visible in the AKR1C3-EM1404 crystal structure. The synthesized compounds were screened for their anticancer activity against four cancer cell lines. Compound 3f demonstrated moderate toxic effects across various cancer types, while displaying lower toxicity towards the healthy cell line. In summary, our findings indicate that <i>N</i>(2)-substituted-1,2,3-triazoles are high-affinity ligands for estrogen receptor β and glucocorticoid receptor, inhibitors of aldo-keto reductase 1C3 enzyme, and exhibit antiproliferative effects against cancer cells, suggesting that they could serve as scaffolds for anticancer drug development.</p>","PeriodicalId":21462,"journal":{"name":"RSC medicinal chemistry","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11488686/pdf/","citationCount":"0","resultStr":"{\"title\":\"Synthesis and biological evaluation of novel D-ring fused steroidal <i>N</i>(2)-substituted-1,2,3-triazoles.\",\"authors\":\"Branislava Tenjović, Sofija Bekić, Andjelka Ćelić, Edward Petri, Julia Scholda, Florian Kopp, Marija Sakač, Andrea Nikolić\",\"doi\":\"10.1039/d4md00297k\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this study, a series of 13 new D-ring fused steroidal <i>N</i>(2)-substituted-1,2,3-triazoles were synthesized, characterized and evaluated for their biological activities. The relative binding affinities of the synthesized compounds for the ligand-binding domains of estrogen receptors α and β, androgen receptor and glucocorticoid receptor demonstrated that androstane derivatives 3a and 3h and estratriene derivative 4e showed highly specific and strong binding affinity for estrogen receptor β, while 3b, 3e, 4a and 4b displayed high binding affinity for the glucocorticoid receptor. The synthesized compounds were tested for their ability to inhibit aldo-keto reductases 1C3 and 1C4 <i>in vitro</i> by monitoring NADPH consumption using fluorescence spectroscopy. The most potent aldo-keto reductase 1C3 inhibitors were compounds 3h (71.17%) and 3f (69.9%). Moreover, a molecular docking study was carried out for compounds 3f and 3h against aldo-keto reductase 1C3 and results showed that compounds 3h and 3f could bind in the same site and orientation as EM1404. However, polar atoms in the triazole group enable additional hydrogen bonding deeper in SP1 with Tyr319, Tyr216 and the NADP<sup>+</sup> cofactor, which are not visible in the AKR1C3-EM1404 crystal structure. The synthesized compounds were screened for their anticancer activity against four cancer cell lines. Compound 3f demonstrated moderate toxic effects across various cancer types, while displaying lower toxicity towards the healthy cell line. In summary, our findings indicate that <i>N</i>(2)-substituted-1,2,3-triazoles are high-affinity ligands for estrogen receptor β and glucocorticoid receptor, inhibitors of aldo-keto reductase 1C3 enzyme, and exhibit antiproliferative effects against cancer cells, suggesting that they could serve as scaffolds for anticancer drug development.</p>\",\"PeriodicalId\":21462,\"journal\":{\"name\":\"RSC medicinal chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11488686/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"RSC medicinal chemistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1039/d4md00297k\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC medicinal chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1039/d4md00297k","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本研究合成了一系列 13 种新的 D 环融合甾体 N(2)-取代-1,2,3-三唑,并对其生物活性进行了表征和评估。合成化合物与雌激素受体α和β、雄激素受体和糖皮质激素受体配体结合域的相对结合亲和力表明,雄甾烷衍生物 3a 和 3h 以及雌三烯衍生物 4e 对雌激素受体 β 具有高度特异性和较强的结合亲和力,而 3b、3e、4a 和 4b 对糖皮质激素受体具有较高的结合亲和力。通过使用荧光光谱监测 NADPH 的消耗,测试了合成化合物在体外抑制醛酮还原酶 1C3 和 1C4 的能力。最有效的醛酮还原酶 1C3 抑制剂是化合物 3h(71.17%)和 3f(69.9%)。此外,还对化合物 3f 和 3h 与醛酮还原酶 1C3 进行了分子对接研究,结果表明化合物 3h 和 3f 与 EM1404 的结合位点和方向相同。然而,三唑基团中的极性原子使 SP1 与 Tyr319、Tyr216 和 NADP+ 辅助因子的氢键结合更深,而这在 AKR1C3-EM1404 晶体结构中是不可见的。对合成的化合物进行了抗癌活性筛选。化合物 3f 在各种癌症类型中表现出中等毒性作用,而对健康细胞系的毒性较低。总之,我们的研究结果表明,N(2)-取代的-1,2,3-三唑是雌激素受体β和糖皮质激素受体的高亲和性配体,是醛酮还原酶 1C3 酶的抑制剂,对癌细胞具有抗增殖作用,表明它们可以作为抗癌药物开发的支架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Synthesis and biological evaluation of novel D-ring fused steroidal N(2)-substituted-1,2,3-triazoles.

In this study, a series of 13 new D-ring fused steroidal N(2)-substituted-1,2,3-triazoles were synthesized, characterized and evaluated for their biological activities. The relative binding affinities of the synthesized compounds for the ligand-binding domains of estrogen receptors α and β, androgen receptor and glucocorticoid receptor demonstrated that androstane derivatives 3a and 3h and estratriene derivative 4e showed highly specific and strong binding affinity for estrogen receptor β, while 3b, 3e, 4a and 4b displayed high binding affinity for the glucocorticoid receptor. The synthesized compounds were tested for their ability to inhibit aldo-keto reductases 1C3 and 1C4 in vitro by monitoring NADPH consumption using fluorescence spectroscopy. The most potent aldo-keto reductase 1C3 inhibitors were compounds 3h (71.17%) and 3f (69.9%). Moreover, a molecular docking study was carried out for compounds 3f and 3h against aldo-keto reductase 1C3 and results showed that compounds 3h and 3f could bind in the same site and orientation as EM1404. However, polar atoms in the triazole group enable additional hydrogen bonding deeper in SP1 with Tyr319, Tyr216 and the NADP+ cofactor, which are not visible in the AKR1C3-EM1404 crystal structure. The synthesized compounds were screened for their anticancer activity against four cancer cell lines. Compound 3f demonstrated moderate toxic effects across various cancer types, while displaying lower toxicity towards the healthy cell line. In summary, our findings indicate that N(2)-substituted-1,2,3-triazoles are high-affinity ligands for estrogen receptor β and glucocorticoid receptor, inhibitors of aldo-keto reductase 1C3 enzyme, and exhibit antiproliferative effects against cancer cells, suggesting that they could serve as scaffolds for anticancer drug development.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.80
自引率
2.40%
发文量
129
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信