Mahmud Omar, Mohammad E Naffaa, Benjamin S Glicksberg, Hagar Reuveni, Girish N Nadkarni, Eyal Klang
{"title":"利用自然语言处理推进风湿病学:系统综述的见解和前景。","authors":"Mahmud Omar, Mohammad E Naffaa, Benjamin S Glicksberg, Hagar Reuveni, Girish N Nadkarni, Eyal Klang","doi":"10.1093/rap/rkae120","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>Natural language processing (NLP) and large language models (LLMs) have emerged as powerful tools in healthcare, offering advanced methods for analysing unstructured clinical texts. This systematic review aims to evaluate the current applications of NLP and LLMs in rheumatology, focusing on their potential to improve disease detection, diagnosis and patient management.</p><p><strong>Methods: </strong>We screened seven databases. We included original research articles that evaluated the performance of NLP models in rheumatology. Data extraction and risk of bias assessment were performed independently by two reviewers, following Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. The Quality Assessment Tool for Observational Cohort and Cross-Sectional Studies was used to evaluate the risk of bias.</p><p><strong>Results: </strong>Of 1491 articles initially identified, 35 studies met the inclusion criteria. These studies utilized various data types, including electronic medical records and clinical notes, and employed models like Bidirectional Encoder Representations from Transformers and Generative Pre-trained Transformers. High accuracy was observed in detecting conditions such as RA, SpAs and gout. The use of NLP also showed promise in managing diseases and predicting flares.</p><p><strong>Conclusion: </strong>NLP showed significant potential in enhancing rheumatology by improving diagnostic accuracy and personalizing patient care. While applications in detecting diseases like RA and gout are well developed, further research is needed to extend these technologies to rarer and more complex clinical conditions. Overcoming current limitations through targeted research is essential for fully realizing NLP's potential in clinical practice.</p>","PeriodicalId":21350,"journal":{"name":"Rheumatology Advances in Practice","volume":"8 4","pages":"rkae120"},"PeriodicalIF":2.1000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11467191/pdf/","citationCount":"0","resultStr":"{\"title\":\"Advancing rheumatology with natural language processing: insights and prospects from a systematic review.\",\"authors\":\"Mahmud Omar, Mohammad E Naffaa, Benjamin S Glicksberg, Hagar Reuveni, Girish N Nadkarni, Eyal Klang\",\"doi\":\"10.1093/rap/rkae120\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objectives: </strong>Natural language processing (NLP) and large language models (LLMs) have emerged as powerful tools in healthcare, offering advanced methods for analysing unstructured clinical texts. This systematic review aims to evaluate the current applications of NLP and LLMs in rheumatology, focusing on their potential to improve disease detection, diagnosis and patient management.</p><p><strong>Methods: </strong>We screened seven databases. We included original research articles that evaluated the performance of NLP models in rheumatology. Data extraction and risk of bias assessment were performed independently by two reviewers, following Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. The Quality Assessment Tool for Observational Cohort and Cross-Sectional Studies was used to evaluate the risk of bias.</p><p><strong>Results: </strong>Of 1491 articles initially identified, 35 studies met the inclusion criteria. These studies utilized various data types, including electronic medical records and clinical notes, and employed models like Bidirectional Encoder Representations from Transformers and Generative Pre-trained Transformers. High accuracy was observed in detecting conditions such as RA, SpAs and gout. The use of NLP also showed promise in managing diseases and predicting flares.</p><p><strong>Conclusion: </strong>NLP showed significant potential in enhancing rheumatology by improving diagnostic accuracy and personalizing patient care. While applications in detecting diseases like RA and gout are well developed, further research is needed to extend these technologies to rarer and more complex clinical conditions. Overcoming current limitations through targeted research is essential for fully realizing NLP's potential in clinical practice.</p>\",\"PeriodicalId\":21350,\"journal\":{\"name\":\"Rheumatology Advances in Practice\",\"volume\":\"8 4\",\"pages\":\"rkae120\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11467191/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Rheumatology Advances in Practice\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/rap/rkae120\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"RHEUMATOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rheumatology Advances in Practice","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/rap/rkae120","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"RHEUMATOLOGY","Score":null,"Total":0}
Advancing rheumatology with natural language processing: insights and prospects from a systematic review.
Objectives: Natural language processing (NLP) and large language models (LLMs) have emerged as powerful tools in healthcare, offering advanced methods for analysing unstructured clinical texts. This systematic review aims to evaluate the current applications of NLP and LLMs in rheumatology, focusing on their potential to improve disease detection, diagnosis and patient management.
Methods: We screened seven databases. We included original research articles that evaluated the performance of NLP models in rheumatology. Data extraction and risk of bias assessment were performed independently by two reviewers, following Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. The Quality Assessment Tool for Observational Cohort and Cross-Sectional Studies was used to evaluate the risk of bias.
Results: Of 1491 articles initially identified, 35 studies met the inclusion criteria. These studies utilized various data types, including electronic medical records and clinical notes, and employed models like Bidirectional Encoder Representations from Transformers and Generative Pre-trained Transformers. High accuracy was observed in detecting conditions such as RA, SpAs and gout. The use of NLP also showed promise in managing diseases and predicting flares.
Conclusion: NLP showed significant potential in enhancing rheumatology by improving diagnostic accuracy and personalizing patient care. While applications in detecting diseases like RA and gout are well developed, further research is needed to extend these technologies to rarer and more complex clinical conditions. Overcoming current limitations through targeted research is essential for fully realizing NLP's potential in clinical practice.