Gabriela Garrappa, Cristina Martínez-López, María Jiménez-Movilla, Francisco A García-Vázquez
{"title":"猪精子与功能化超顺磁性纳米粒子的体外接触。","authors":"Gabriela Garrappa, Cristina Martínez-López, María Jiménez-Movilla, Francisco A García-Vázquez","doi":"10.1111/rda.14654","DOIUrl":null,"url":null,"abstract":"<p><p>Nanotechnology and its applications have advanced significantly in recent decades, contributing to various fields, including reproduction. This study introduces a novel method to label porcine oocytes with nanoparticles (NPs) bound to oviductin (OVGP1, Ov) for use in Assisted Reproductive Technologies (ARTs). Despite promising developments, concerns about NP toxicity in gametes necessitate thorough investigation. This research aims to assess the impact of functionalized NPs (NPOv) on sperm functionality. Boar sperm were co-incubated with NPOv for 0, 0.5 and 1 h in two media: BTS (semen dilution and conservation) and TALP (sperm capacitation and in vitro fertilization-IVF). Sperm quality parameters (viability, motility and kinematics) showed no significant differences in TALP medium (p > .05). In BTS, although some kinetic parameters were altered, motility, progressive motility and viability remained unaffected (p > .05). Additionally, NPs presence on the zona pellucida (ZP) of oocytes did not affect sperm attachment (p > .05). In conclusion, in vitro exposure of boar sperm to OVGP1-functionalized NPs in IVF medium or attached to the ZP surface of matured oocytes does not impair sperm functionality, including their binding ability to the ZP.</p>","PeriodicalId":21035,"journal":{"name":"Reproduction in Domestic Animals","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In vitro exposure of porcine sperm to functionalized superparamagnetic nanoparticles.\",\"authors\":\"Gabriela Garrappa, Cristina Martínez-López, María Jiménez-Movilla, Francisco A García-Vázquez\",\"doi\":\"10.1111/rda.14654\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Nanotechnology and its applications have advanced significantly in recent decades, contributing to various fields, including reproduction. This study introduces a novel method to label porcine oocytes with nanoparticles (NPs) bound to oviductin (OVGP1, Ov) for use in Assisted Reproductive Technologies (ARTs). Despite promising developments, concerns about NP toxicity in gametes necessitate thorough investigation. This research aims to assess the impact of functionalized NPs (NPOv) on sperm functionality. Boar sperm were co-incubated with NPOv for 0, 0.5 and 1 h in two media: BTS (semen dilution and conservation) and TALP (sperm capacitation and in vitro fertilization-IVF). Sperm quality parameters (viability, motility and kinematics) showed no significant differences in TALP medium (p > .05). In BTS, although some kinetic parameters were altered, motility, progressive motility and viability remained unaffected (p > .05). Additionally, NPs presence on the zona pellucida (ZP) of oocytes did not affect sperm attachment (p > .05). In conclusion, in vitro exposure of boar sperm to OVGP1-functionalized NPs in IVF medium or attached to the ZP surface of matured oocytes does not impair sperm functionality, including their binding ability to the ZP.</p>\",\"PeriodicalId\":21035,\"journal\":{\"name\":\"Reproduction in Domestic Animals\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reproduction in Domestic Animals\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1111/rda.14654\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AGRICULTURE, DAIRY & ANIMAL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reproduction in Domestic Animals","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1111/rda.14654","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
In vitro exposure of porcine sperm to functionalized superparamagnetic nanoparticles.
Nanotechnology and its applications have advanced significantly in recent decades, contributing to various fields, including reproduction. This study introduces a novel method to label porcine oocytes with nanoparticles (NPs) bound to oviductin (OVGP1, Ov) for use in Assisted Reproductive Technologies (ARTs). Despite promising developments, concerns about NP toxicity in gametes necessitate thorough investigation. This research aims to assess the impact of functionalized NPs (NPOv) on sperm functionality. Boar sperm were co-incubated with NPOv for 0, 0.5 and 1 h in two media: BTS (semen dilution and conservation) and TALP (sperm capacitation and in vitro fertilization-IVF). Sperm quality parameters (viability, motility and kinematics) showed no significant differences in TALP medium (p > .05). In BTS, although some kinetic parameters were altered, motility, progressive motility and viability remained unaffected (p > .05). Additionally, NPs presence on the zona pellucida (ZP) of oocytes did not affect sperm attachment (p > .05). In conclusion, in vitro exposure of boar sperm to OVGP1-functionalized NPs in IVF medium or attached to the ZP surface of matured oocytes does not impair sperm functionality, including their binding ability to the ZP.
期刊介绍:
The journal offers comprehensive information concerning physiology, pathology, and biotechnology of reproduction. Topical results are currently published in original papers, reviews, and short communications with particular attention to investigations on practicable techniques.
Carefully selected reports, e. g. on embryo transfer and associated biotechnologies, gene transfer, and spermatology provide a link between basic research and clinical application. The journal applies to breeders, veterinarians, and biologists, and is also of interest in human medicine. Interdisciplinary cooperation is documented in the proceedings of the joint annual meetings.
Fields of interest: Animal reproduction and biotechnology with special regard to investigations on applied and clinical research.