Nicole L Zabik, Allesandra Iadipaolo, Craig A Peters, Samantha L Baglot, Matthew N Hill, Christine A Rabinak
{"title":"急性四氢大麻酚对消退记忆回忆和恐惧恢复的剂量依赖效应:一项随机、双盲、安慰剂对照研究。","authors":"Nicole L Zabik, Allesandra Iadipaolo, Craig A Peters, Samantha L Baglot, Matthew N Hill, Christine A Rabinak","doi":"10.1007/s00213-024-06702-w","DOIUrl":null,"url":null,"abstract":"<p><strong>Rationale: </strong>Prior work from our lab and others demonstrates that the endocannabinoid system is a promising avenue for improving fear memory deficits in posttraumatic stress disorder (PTSD). Specifically, 7.5 mg of delta-9-tetrahydrocannabinol (THC) decreases fear responding in healthy adults and increases prefrontal cortex activation during extinction learning and fear renewal in adults with PTSD.</p><p><strong>Objectives: </strong>The present study will determine whether there is a dose-dependent effect of THC on short-term (24 h) and long-term (one week) fear learning and memory in adults with PTSD.</p><p><strong>Methods: </strong>Using a randomized, double-blind, placebo-controlled design, N = 36 adults with PTSD completed the study and were randomized to receive placebo (PBO, n = 11), 5 mg of THC (n = 11), or 10 mg of THC (n = 14) prior to fear extinction learning. Participants completed a Pavlovian conditioning paradigm with extinction recall and fear renewal occurring 24 h and one week later, where we measured concurrent functional imaging and behavioral responses.</p><p><strong>Results: </strong>Twenty-four hours after drug administration, individuals with PTSD given 5 mg of THC exhibited greater anterior cingulate cortex and prefrontal cortex activation during early fear renewal. One week later, individuals given 10 mg of THC exhibited greater hippocampus activation during extinction recall and prefrontal cortex activation during fear renewal.</p><p><strong>Conclusions: </strong>These data suggest that dosing and timing are critical for facilitating fear memory processes in PTSD, and that low-dose oral THC prior to extinction learning can affect brain indices of fear learning and memory both acutely and one week after administration.</p>","PeriodicalId":20783,"journal":{"name":"Psychopharmacology","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dose-dependent effect of acute THC on extinction memory recall and fear renewal: a randomized, double-blind, placebo-controlled study.\",\"authors\":\"Nicole L Zabik, Allesandra Iadipaolo, Craig A Peters, Samantha L Baglot, Matthew N Hill, Christine A Rabinak\",\"doi\":\"10.1007/s00213-024-06702-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Rationale: </strong>Prior work from our lab and others demonstrates that the endocannabinoid system is a promising avenue for improving fear memory deficits in posttraumatic stress disorder (PTSD). Specifically, 7.5 mg of delta-9-tetrahydrocannabinol (THC) decreases fear responding in healthy adults and increases prefrontal cortex activation during extinction learning and fear renewal in adults with PTSD.</p><p><strong>Objectives: </strong>The present study will determine whether there is a dose-dependent effect of THC on short-term (24 h) and long-term (one week) fear learning and memory in adults with PTSD.</p><p><strong>Methods: </strong>Using a randomized, double-blind, placebo-controlled design, N = 36 adults with PTSD completed the study and were randomized to receive placebo (PBO, n = 11), 5 mg of THC (n = 11), or 10 mg of THC (n = 14) prior to fear extinction learning. Participants completed a Pavlovian conditioning paradigm with extinction recall and fear renewal occurring 24 h and one week later, where we measured concurrent functional imaging and behavioral responses.</p><p><strong>Results: </strong>Twenty-four hours after drug administration, individuals with PTSD given 5 mg of THC exhibited greater anterior cingulate cortex and prefrontal cortex activation during early fear renewal. One week later, individuals given 10 mg of THC exhibited greater hippocampus activation during extinction recall and prefrontal cortex activation during fear renewal.</p><p><strong>Conclusions: </strong>These data suggest that dosing and timing are critical for facilitating fear memory processes in PTSD, and that low-dose oral THC prior to extinction learning can affect brain indices of fear learning and memory both acutely and one week after administration.</p>\",\"PeriodicalId\":20783,\"journal\":{\"name\":\"Psychopharmacology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Psychopharmacology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s00213-024-06702-w\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Psychopharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00213-024-06702-w","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Dose-dependent effect of acute THC on extinction memory recall and fear renewal: a randomized, double-blind, placebo-controlled study.
Rationale: Prior work from our lab and others demonstrates that the endocannabinoid system is a promising avenue for improving fear memory deficits in posttraumatic stress disorder (PTSD). Specifically, 7.5 mg of delta-9-tetrahydrocannabinol (THC) decreases fear responding in healthy adults and increases prefrontal cortex activation during extinction learning and fear renewal in adults with PTSD.
Objectives: The present study will determine whether there is a dose-dependent effect of THC on short-term (24 h) and long-term (one week) fear learning and memory in adults with PTSD.
Methods: Using a randomized, double-blind, placebo-controlled design, N = 36 adults with PTSD completed the study and were randomized to receive placebo (PBO, n = 11), 5 mg of THC (n = 11), or 10 mg of THC (n = 14) prior to fear extinction learning. Participants completed a Pavlovian conditioning paradigm with extinction recall and fear renewal occurring 24 h and one week later, where we measured concurrent functional imaging and behavioral responses.
Results: Twenty-four hours after drug administration, individuals with PTSD given 5 mg of THC exhibited greater anterior cingulate cortex and prefrontal cortex activation during early fear renewal. One week later, individuals given 10 mg of THC exhibited greater hippocampus activation during extinction recall and prefrontal cortex activation during fear renewal.
Conclusions: These data suggest that dosing and timing are critical for facilitating fear memory processes in PTSD, and that low-dose oral THC prior to extinction learning can affect brain indices of fear learning and memory both acutely and one week after administration.
期刊介绍:
Official Journal of the European Behavioural Pharmacology Society (EBPS)
Psychopharmacology is an international journal that covers the broad topic of elucidating mechanisms by which drugs affect behavior. The scope of the journal encompasses the following fields:
Human Psychopharmacology: Experimental
This section includes manuscripts describing the effects of drugs on mood, behavior, cognition and physiology in humans. The journal encourages submissions that involve brain imaging, genetics, neuroendocrinology, and developmental topics. Usually manuscripts in this section describe studies conducted under controlled conditions, but occasionally descriptive or observational studies are also considered.
Human Psychopharmacology: Clinical and Translational
This section comprises studies addressing the broad intersection of drugs and psychiatric illness. This includes not only clinical trials and studies of drug usage and metabolism, drug surveillance, and pharmacoepidemiology, but also work utilizing the entire range of clinically relevant methodologies, including neuroimaging, pharmacogenetics, cognitive science, biomarkers, and others. Work directed toward the translation of preclinical to clinical knowledge is especially encouraged. The key feature of submissions to this section is that they involve a focus on clinical aspects.
Preclinical psychopharmacology: Behavioral and Neural
This section considers reports on the effects of compounds with defined chemical structures on any aspect of behavior, in particular when correlated with neurochemical effects, in species other than humans. Manuscripts containing neuroscientific techniques in combination with behavior are welcome. We encourage reports of studies that provide insight into the mechanisms of drug action, at the behavioral and molecular levels.
Preclinical Psychopharmacology: Translational
This section considers manuscripts that enhance the confidence in a central mechanism that could be of therapeutic value for psychiatric or neurological patients, using disease-relevant preclinical models and tests, or that report on preclinical manipulations and challenges that have the potential to be translated to the clinic. Studies aiming at the refinement of preclinical models based upon clinical findings (back-translation) will also be considered. The journal particularly encourages submissions that integrate measures of target tissue exposure, activity on the molecular target and/or modulation of the targeted biochemical pathways.
Preclinical Psychopharmacology: Molecular, Genetic and Epigenetic
This section focuses on the molecular and cellular actions of neuropharmacological agents / drugs, and the identification / validation of drug targets affecting the CNS in health and disease. We particularly encourage studies that provide insight into the mechanisms of drug action at the molecular level. Manuscripts containing evidence for genetic or epigenetic effects on neurochemistry or behavior are welcome.