Muhammad Hassan, Jieqiong Lin, Ahmad Ameen Fateh, Yijiang Zhuang, Guisen Lin, Dawar Khan, Adam A Q Mohammed, Hongwu Zeng
{"title":"使用深度学习的大脑 MRI 和 CP 关联趋势。","authors":"Muhammad Hassan, Jieqiong Lin, Ahmad Ameen Fateh, Yijiang Zhuang, Guisen Lin, Dawar Khan, Adam A Q Mohammed, Hongwu Zeng","doi":"10.1007/s11547-024-01893-w","DOIUrl":null,"url":null,"abstract":"<p><p>Cerebral palsy (CP) is a neurological disorder that dissipates body posture and impairs motor functions. It may lead to an intellectual disability and affect the quality of life. Early intervention is critical and challenging due to the uncooperative body movements of children, potential infant recovery, a lack of a single vision modality, and no specific contrast or slice-range selection and association. Early and timely CP identification and vulnerable brain MRI scan associations facilitate medications, supportive care, physical therapy, rehabilitation, and surgical interventions to alleviate symptoms and improve motor functions. The literature studies are limited in selecting appropriate contrast and utilizing contrastive coupling in CP investigation. After numerous experiments, we introduce deep learning models, namely SSeq-DL and SMS-DL, correspondingly trained on single-sequence and multiple brain MRIs. The introduced models are tailored with specialized attention mechanisms to learn susceptible brain trends associated with CP along the MRI slices, specialized parallel computing, and fusions at distinct network layer positions to significantly identify CP. The study successfully experimented with the appropriateness of single and coupled MRI scans, highlighting sensitive slices along the depth, model robustness, fusion of contrastive details at distinct levels, and capturing vulnerabilities. The findings of the SSeq-DL and SMSeq-DL models report lesion-vulnerable regions and covered slices trending in age range to assist radiologists in early rehabilitation.</p>","PeriodicalId":20817,"journal":{"name":"Radiologia Medica","volume":" ","pages":"1667-1681"},"PeriodicalIF":9.7000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11554846/pdf/","citationCount":"0","resultStr":"{\"title\":\"Trends in brain MRI and CP association using deep learning.\",\"authors\":\"Muhammad Hassan, Jieqiong Lin, Ahmad Ameen Fateh, Yijiang Zhuang, Guisen Lin, Dawar Khan, Adam A Q Mohammed, Hongwu Zeng\",\"doi\":\"10.1007/s11547-024-01893-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cerebral palsy (CP) is a neurological disorder that dissipates body posture and impairs motor functions. It may lead to an intellectual disability and affect the quality of life. Early intervention is critical and challenging due to the uncooperative body movements of children, potential infant recovery, a lack of a single vision modality, and no specific contrast or slice-range selection and association. Early and timely CP identification and vulnerable brain MRI scan associations facilitate medications, supportive care, physical therapy, rehabilitation, and surgical interventions to alleviate symptoms and improve motor functions. The literature studies are limited in selecting appropriate contrast and utilizing contrastive coupling in CP investigation. After numerous experiments, we introduce deep learning models, namely SSeq-DL and SMS-DL, correspondingly trained on single-sequence and multiple brain MRIs. The introduced models are tailored with specialized attention mechanisms to learn susceptible brain trends associated with CP along the MRI slices, specialized parallel computing, and fusions at distinct network layer positions to significantly identify CP. The study successfully experimented with the appropriateness of single and coupled MRI scans, highlighting sensitive slices along the depth, model robustness, fusion of contrastive details at distinct levels, and capturing vulnerabilities. The findings of the SSeq-DL and SMSeq-DL models report lesion-vulnerable regions and covered slices trending in age range to assist radiologists in early rehabilitation.</p>\",\"PeriodicalId\":20817,\"journal\":{\"name\":\"Radiologia Medica\",\"volume\":\" \",\"pages\":\"1667-1681\"},\"PeriodicalIF\":9.7000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11554846/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Radiologia Medica\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s11547-024-01893-w\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/10 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiologia Medica","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11547-024-01893-w","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/10 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
Trends in brain MRI and CP association using deep learning.
Cerebral palsy (CP) is a neurological disorder that dissipates body posture and impairs motor functions. It may lead to an intellectual disability and affect the quality of life. Early intervention is critical and challenging due to the uncooperative body movements of children, potential infant recovery, a lack of a single vision modality, and no specific contrast or slice-range selection and association. Early and timely CP identification and vulnerable brain MRI scan associations facilitate medications, supportive care, physical therapy, rehabilitation, and surgical interventions to alleviate symptoms and improve motor functions. The literature studies are limited in selecting appropriate contrast and utilizing contrastive coupling in CP investigation. After numerous experiments, we introduce deep learning models, namely SSeq-DL and SMS-DL, correspondingly trained on single-sequence and multiple brain MRIs. The introduced models are tailored with specialized attention mechanisms to learn susceptible brain trends associated with CP along the MRI slices, specialized parallel computing, and fusions at distinct network layer positions to significantly identify CP. The study successfully experimented with the appropriateness of single and coupled MRI scans, highlighting sensitive slices along the depth, model robustness, fusion of contrastive details at distinct levels, and capturing vulnerabilities. The findings of the SSeq-DL and SMSeq-DL models report lesion-vulnerable regions and covered slices trending in age range to assist radiologists in early rehabilitation.
期刊介绍:
Felice Perussia founded La radiologia medica in 1914. It is a peer-reviewed journal and serves as the official journal of the Italian Society of Medical and Interventional Radiology (SIRM). The primary purpose of the journal is to disseminate information related to Radiology, especially advancements in diagnostic imaging and related disciplines. La radiologia medica welcomes original research on both fundamental and clinical aspects of modern radiology, with a particular focus on diagnostic and interventional imaging techniques. It also covers topics such as radiotherapy, nuclear medicine, radiobiology, health physics, and artificial intelligence in the context of clinical implications. The journal includes various types of contributions such as original articles, review articles, editorials, short reports, and letters to the editor. With an esteemed Editorial Board and a selection of insightful reports, the journal is an indispensable resource for radiologists and professionals in related fields. Ultimately, La radiologia medica aims to serve as a platform for international collaboration and knowledge sharing within the radiological community.