封闭鱼群中的集体相变。

IF 9.4 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Chenchen Huang, Feng Ling, Eva Kanso
{"title":"封闭鱼群中的集体相变。","authors":"Chenchen Huang, Feng Ling, Eva Kanso","doi":"10.1073/pnas.2406293121","DOIUrl":null,"url":null,"abstract":"<p><p>The collective patterns that emerge in schooling fish are often analyzed using models of self-propelled particles in unbounded domains. However, while schooling fish in both field and laboratory settings interact with domain boundaries, these effects are typically ignored. Here, we propose a model that incorporates geometric confinement, by accounting for both flow and wall interactions, into existing data-driven behavioral rules. We show that new collective phases emerge where the school of fish \"follows the tank wall\" or \"double mills.\" Importantly, confinement induces repeated switching between two collective states, schooling and milling. We describe the group dynamics probabilistically, uncovering bistable collective states along with unintuitive bifurcations driving phase transitions. Our findings support the hypothesis that collective transitions in fish schools could occur spontaneously, with no adjustment at the individual level, and opens venues to control and engineer emergent collective patterns in biological and synthetic systems that operate far from equilibrium.</p>","PeriodicalId":20548,"journal":{"name":"Proceedings of the National Academy of Sciences of the United States of America","volume":null,"pages":null},"PeriodicalIF":9.4000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Collective phase transitions in confined fish schools.\",\"authors\":\"Chenchen Huang, Feng Ling, Eva Kanso\",\"doi\":\"10.1073/pnas.2406293121\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The collective patterns that emerge in schooling fish are often analyzed using models of self-propelled particles in unbounded domains. However, while schooling fish in both field and laboratory settings interact with domain boundaries, these effects are typically ignored. Here, we propose a model that incorporates geometric confinement, by accounting for both flow and wall interactions, into existing data-driven behavioral rules. We show that new collective phases emerge where the school of fish \\\"follows the tank wall\\\" or \\\"double mills.\\\" Importantly, confinement induces repeated switching between two collective states, schooling and milling. We describe the group dynamics probabilistically, uncovering bistable collective states along with unintuitive bifurcations driving phase transitions. Our findings support the hypothesis that collective transitions in fish schools could occur spontaneously, with no adjustment at the individual level, and opens venues to control and engineer emergent collective patterns in biological and synthetic systems that operate far from equilibrium.</p>\",\"PeriodicalId\":20548,\"journal\":{\"name\":\"Proceedings of the National Academy of Sciences of the United States of America\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2024-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the National Academy of Sciences of the United States of America\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1073/pnas.2406293121\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/21 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the National Academy of Sciences of the United States of America","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1073/pnas.2406293121","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/21 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

人们通常使用无界域中自走粒子的模型来分析鱼群中出现的集体模式。然而,在野外和实验室环境中,鱼群会与领域边界相互作用,但这些影响通常被忽略。在这里,我们提出了一个模型,通过考虑流动和壁面的相互作用,将几何限制纳入现有的数据驱动行为规则中。我们发现,在鱼群 "紧贴缸壁 "或 "双碾 "的情况下,会出现新的集体阶段。重要的是,封闭诱导鱼群在两种集体状态(游弋和碾磨)之间反复切换。我们从概率上描述了鱼群的动态,发现了双稳态集体状态以及驱动相变的非直观分岔。我们的发现支持了鱼群中的集体转换可能自发发生的假设,而个体水平上没有任何调整,这为在远离平衡的生物和合成系统中控制和设计出现的集体模式开辟了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Collective phase transitions in confined fish schools.

The collective patterns that emerge in schooling fish are often analyzed using models of self-propelled particles in unbounded domains. However, while schooling fish in both field and laboratory settings interact with domain boundaries, these effects are typically ignored. Here, we propose a model that incorporates geometric confinement, by accounting for both flow and wall interactions, into existing data-driven behavioral rules. We show that new collective phases emerge where the school of fish "follows the tank wall" or "double mills." Importantly, confinement induces repeated switching between two collective states, schooling and milling. We describe the group dynamics probabilistically, uncovering bistable collective states along with unintuitive bifurcations driving phase transitions. Our findings support the hypothesis that collective transitions in fish schools could occur spontaneously, with no adjustment at the individual level, and opens venues to control and engineer emergent collective patterns in biological and synthetic systems that operate far from equilibrium.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
19.00
自引率
0.90%
发文量
3575
审稿时长
2.5 months
期刊介绍: The Proceedings of the National Academy of Sciences (PNAS), a peer-reviewed journal of the National Academy of Sciences (NAS), serves as an authoritative source for high-impact, original research across the biological, physical, and social sciences. With a global scope, the journal welcomes submissions from researchers worldwide, making it an inclusive platform for advancing scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信