{"title":"植物发育、适应和进化过程中的增强因子。","authors":"Bliss M Beernink, John P Vogel, Li Lei","doi":"10.1093/pcp/pcae121","DOIUrl":null,"url":null,"abstract":"<p><p>Understanding plant responses to developmental and environmental cues is crucial for studying morphological divergence and local adaptation. Gene expression changes, governed by cis-regulatory modules (CRMs) including enhancers, are a major source of plant phenotypic variation. However, while genome-wide approaches have revealed thousands of putative enhancers in mammals, far fewer have been identified and functionally characterized in plants. This review provides an overview of how enhancers function to control gene regulation, methods to predict DNA sequences that may have enhancer activity, methods utilized to functionally validate enhancers, and the current knowledge of enhancers in plants, including how they impact plant development, response to environment, and evolutionary adaptation.</p>","PeriodicalId":20575,"journal":{"name":"Plant and Cell Physiology","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancers in Plant Development, Adaptation, and Evolution.\",\"authors\":\"Bliss M Beernink, John P Vogel, Li Lei\",\"doi\":\"10.1093/pcp/pcae121\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Understanding plant responses to developmental and environmental cues is crucial for studying morphological divergence and local adaptation. Gene expression changes, governed by cis-regulatory modules (CRMs) including enhancers, are a major source of plant phenotypic variation. However, while genome-wide approaches have revealed thousands of putative enhancers in mammals, far fewer have been identified and functionally characterized in plants. This review provides an overview of how enhancers function to control gene regulation, methods to predict DNA sequences that may have enhancer activity, methods utilized to functionally validate enhancers, and the current knowledge of enhancers in plants, including how they impact plant development, response to environment, and evolutionary adaptation.</p>\",\"PeriodicalId\":20575,\"journal\":{\"name\":\"Plant and Cell Physiology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant and Cell Physiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/pcp/pcae121\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant and Cell Physiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/pcp/pcae121","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
了解植物对发育和环境线索的反应对于研究形态差异和局部适应至关重要。由包括增强子在内的顺式调控模块(CRM)控制的基因表达变化是植物表型变异的主要来源。然而,尽管全基因组方法在哺乳动物中发现了数千个假定的增强子,但在植物中发现的增强子数量和功能特征却少得多。本综述概述了增强子如何发挥控制基因调控的功能、预测可能具有增强子活性的 DNA 序列的方法、对增强子进行功能验证的方法,以及目前对植物中增强子的了解,包括它们如何影响植物的发育、对环境的响应以及进化适应。
Enhancers in Plant Development, Adaptation, and Evolution.
Understanding plant responses to developmental and environmental cues is crucial for studying morphological divergence and local adaptation. Gene expression changes, governed by cis-regulatory modules (CRMs) including enhancers, are a major source of plant phenotypic variation. However, while genome-wide approaches have revealed thousands of putative enhancers in mammals, far fewer have been identified and functionally characterized in plants. This review provides an overview of how enhancers function to control gene regulation, methods to predict DNA sequences that may have enhancer activity, methods utilized to functionally validate enhancers, and the current knowledge of enhancers in plants, including how they impact plant development, response to environment, and evolutionary adaptation.
期刊介绍:
Plant & Cell Physiology (PCP) was established in 1959 and is the official journal of the Japanese Society of Plant Physiologists (JSPP). The title reflects the journal''s original interest and scope to encompass research not just at the whole-organism level but also at the cellular and subcellular levels.
Amongst the broad range of topics covered by this international journal, readers will find the very best original research on plant physiology, biochemistry, cell biology, molecular genetics, epigenetics, biotechnology, bioinformatics and –omics; as well as how plants respond to and interact with their environment (abiotic and biotic factors), and the biology of photosynthetic microorganisms.