Sate Ahmad, Charilaos Yiotis, Weimu Xu, Jan Knappe, Laurence Gill, Jennifer McElwain
{"title":"尽管施用了碳肥,但在二氧化碳升高的条件下,较低的草气孔导度会降低蒸腾和蒸散率。","authors":"Sate Ahmad, Charilaos Yiotis, Weimu Xu, Jan Knappe, Laurence Gill, Jennifer McElwain","doi":"10.1002/pld3.70013","DOIUrl":null,"url":null,"abstract":"<p><p>Anthropogenic increase in carbon dioxide (CO<sub>2</sub>) affects plant physiology. Plant responses to elevated CO<sub>2</sub> typically include: (1) enhanced photosynthesis and increased primary productivity due to carbon fertilization and (2) suppression of leaf transpiration due to CO<sub>2</sub>-driven decrease in stomatal conductance. The combined effect of these responses on the total plant transpiration and on evapotranspiration (ET) has a wide range of implications on local, regional, and global hydrological cycles, and thus needs to be better understood. Here, we investigated the net effect of CO<sub>2</sub>-driven perennial ryegrass (<i>Lolium perenne</i>) physiological responses on transpiration and evapotranspiration by integrating physiological and hydrological (water budget) methods, under a controlled environment. Measurements of the net photosynthetic rate, stomatal conductance, transpiration rate, leaf mass per area, aboveground biomass, and water balance components were recorded. Measured variables under elevated CO<sub>2</sub> were compared with those of ambient CO<sub>2</sub>. As expected, our results show that elevated CO<sub>2</sub> significantly decreases whole-plant transpiration rates (38% lower in the final week) which is a result of lower stomatal conductance (57% lower in the final week) despite a slight increase in aboveground biomass. Additionally, there was an overall decline in evapotranspiration (ET) under elevated CO<sub>2</sub>, indicating the impact of CO<sub>2</sub>-mediated suppression of transpiration on the overall water balance. Although studies with larger sample sizes are needed for more robust conclusions, our findings have significant implications for global environmental change. Reductions in ET from ryegrass-dominated grasslands and pastures could increase soil moisture and groundwater recharge, potentially leading to increased surface runoff and flooding.</p>","PeriodicalId":20230,"journal":{"name":"Plant Direct","volume":"8 10","pages":"e70013"},"PeriodicalIF":2.3000,"publicationDate":"2024-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11491413/pdf/","citationCount":"0","resultStr":"{\"title\":\"Lower grass stomatal conductance under elevated CO<sub>2</sub> can decrease transpiration and evapotranspiration rates despite carbon fertilization.\",\"authors\":\"Sate Ahmad, Charilaos Yiotis, Weimu Xu, Jan Knappe, Laurence Gill, Jennifer McElwain\",\"doi\":\"10.1002/pld3.70013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Anthropogenic increase in carbon dioxide (CO<sub>2</sub>) affects plant physiology. Plant responses to elevated CO<sub>2</sub> typically include: (1) enhanced photosynthesis and increased primary productivity due to carbon fertilization and (2) suppression of leaf transpiration due to CO<sub>2</sub>-driven decrease in stomatal conductance. The combined effect of these responses on the total plant transpiration and on evapotranspiration (ET) has a wide range of implications on local, regional, and global hydrological cycles, and thus needs to be better understood. Here, we investigated the net effect of CO<sub>2</sub>-driven perennial ryegrass (<i>Lolium perenne</i>) physiological responses on transpiration and evapotranspiration by integrating physiological and hydrological (water budget) methods, under a controlled environment. Measurements of the net photosynthetic rate, stomatal conductance, transpiration rate, leaf mass per area, aboveground biomass, and water balance components were recorded. Measured variables under elevated CO<sub>2</sub> were compared with those of ambient CO<sub>2</sub>. As expected, our results show that elevated CO<sub>2</sub> significantly decreases whole-plant transpiration rates (38% lower in the final week) which is a result of lower stomatal conductance (57% lower in the final week) despite a slight increase in aboveground biomass. Additionally, there was an overall decline in evapotranspiration (ET) under elevated CO<sub>2</sub>, indicating the impact of CO<sub>2</sub>-mediated suppression of transpiration on the overall water balance. Although studies with larger sample sizes are needed for more robust conclusions, our findings have significant implications for global environmental change. Reductions in ET from ryegrass-dominated grasslands and pastures could increase soil moisture and groundwater recharge, potentially leading to increased surface runoff and flooding.</p>\",\"PeriodicalId\":20230,\"journal\":{\"name\":\"Plant Direct\",\"volume\":\"8 10\",\"pages\":\"e70013\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11491413/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Direct\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1002/pld3.70013\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Direct","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/pld3.70013","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Lower grass stomatal conductance under elevated CO2 can decrease transpiration and evapotranspiration rates despite carbon fertilization.
Anthropogenic increase in carbon dioxide (CO2) affects plant physiology. Plant responses to elevated CO2 typically include: (1) enhanced photosynthesis and increased primary productivity due to carbon fertilization and (2) suppression of leaf transpiration due to CO2-driven decrease in stomatal conductance. The combined effect of these responses on the total plant transpiration and on evapotranspiration (ET) has a wide range of implications on local, regional, and global hydrological cycles, and thus needs to be better understood. Here, we investigated the net effect of CO2-driven perennial ryegrass (Lolium perenne) physiological responses on transpiration and evapotranspiration by integrating physiological and hydrological (water budget) methods, under a controlled environment. Measurements of the net photosynthetic rate, stomatal conductance, transpiration rate, leaf mass per area, aboveground biomass, and water balance components were recorded. Measured variables under elevated CO2 were compared with those of ambient CO2. As expected, our results show that elevated CO2 significantly decreases whole-plant transpiration rates (38% lower in the final week) which is a result of lower stomatal conductance (57% lower in the final week) despite a slight increase in aboveground biomass. Additionally, there was an overall decline in evapotranspiration (ET) under elevated CO2, indicating the impact of CO2-mediated suppression of transpiration on the overall water balance. Although studies with larger sample sizes are needed for more robust conclusions, our findings have significant implications for global environmental change. Reductions in ET from ryegrass-dominated grasslands and pastures could increase soil moisture and groundwater recharge, potentially leading to increased surface runoff and flooding.
期刊介绍:
Plant Direct is a monthly, sound science journal for the plant sciences that gives prompt and equal consideration to papers reporting work dealing with a variety of subjects. Topics include but are not limited to genetics, biochemistry, development, cell biology, biotic stress, abiotic stress, genomics, phenomics, bioinformatics, physiology, molecular biology, and evolution. A collaborative journal launched by the American Society of Plant Biologists, the Society for Experimental Biology and Wiley, Plant Direct publishes papers submitted directly to the journal as well as those referred from a select group of the societies’ journals.