Yu Qi , Haoyun Zhu , Yinqi Chen , Yuanlong Zhang , Shengjie Jin , Xiao Xu , Xiaohong Ma , Leiqing Chen , Min Zhao , Haoru Zhu , Pengcheng Yan
{"title":"4-羟基双焦内酯通过AMPK信号通路调节神经炎症和自噬减轻脑缺血损伤","authors":"Yu Qi , Haoyun Zhu , Yinqi Chen , Yuanlong Zhang , Shengjie Jin , Xiao Xu , Xiaohong Ma , Leiqing Chen , Min Zhao , Haoru Zhu , Pengcheng Yan","doi":"10.1016/j.phymed.2024.156157","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Cerebral ischemia (CI), a cerebrovascular disorder, is a major contributor to disability and mortality. Marine-derived compounds are an important source of new neuroprotective drug candidates. Xenicane-type diterpenes from brown algae of the genus <em>Dictyota</em> have exhibited potential neuroprotective effects against CI injury, attributed to their antioxidant properties. However, whether there are other underlying neuroprotective mechanisms of xenicane diterpenes against CI is still ambiguous.</div></div><div><h3>Purpose</h3><div>This study aims to elucidate the neuroprotective efficacy and mechanism of 4-hydroxydictyolactone (HDTL) in the treatment of CI.</div></div><div><h3>Methods</h3><div>The LPS-induced BV2 cell model was used for anti-neuroinflammatory activity assay. Tandem Mass Tag (TMT)-based quantitative proteomics was employed to identify underlying mechanisms. The OGD/R-induced SH-SY5Y cell model and a MCAO mice model were used to assess the neuroprotective effect of HDTL against CI in vitro and in vivo.</div></div><div><h3>Results</h3><div>HDTL reduced inflammation in LPS-stimulated BV2 cells by inhibiting the IKK/IκB/NF-κB pathway and by enhancing AMPK phosphorylation. Additionally, in SH-SY5Y cells treated with OGD/R, HDTL facilitated autophagy and reduced apoptosis. The neuroprotective properties of HDTL were abrogated in AMPK- silenced SH-SY5Y cells. In MCAO mice, HDTL ameliorated CI injury as evidenced by decreases in neurological deficit scores and cerebral infarction. HDTL also promoted autophagy and reduced apoptosis in vivo through both the AMPK/mTOR and IKK/IκB/NF-κB pathways.</div></div><div><h3>Conclusion</h3><div>HDTL exhibits neuroprotective effects through regulating the AMPK/mTOR and IKK/IκB/NF-κB pathways. These findings suggest that HDTL is a promising therapeutic candidate for CI treatment.</div></div>","PeriodicalId":20212,"journal":{"name":"Phytomedicine","volume":null,"pages":null},"PeriodicalIF":6.7000,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"4-Hydroxydictyolactone alleviates cerebral ischemia injury by regulating neuroinflammation and autophagy via AMPK signaling pathway\",\"authors\":\"Yu Qi , Haoyun Zhu , Yinqi Chen , Yuanlong Zhang , Shengjie Jin , Xiao Xu , Xiaohong Ma , Leiqing Chen , Min Zhao , Haoru Zhu , Pengcheng Yan\",\"doi\":\"10.1016/j.phymed.2024.156157\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><div>Cerebral ischemia (CI), a cerebrovascular disorder, is a major contributor to disability and mortality. Marine-derived compounds are an important source of new neuroprotective drug candidates. Xenicane-type diterpenes from brown algae of the genus <em>Dictyota</em> have exhibited potential neuroprotective effects against CI injury, attributed to their antioxidant properties. However, whether there are other underlying neuroprotective mechanisms of xenicane diterpenes against CI is still ambiguous.</div></div><div><h3>Purpose</h3><div>This study aims to elucidate the neuroprotective efficacy and mechanism of 4-hydroxydictyolactone (HDTL) in the treatment of CI.</div></div><div><h3>Methods</h3><div>The LPS-induced BV2 cell model was used for anti-neuroinflammatory activity assay. Tandem Mass Tag (TMT)-based quantitative proteomics was employed to identify underlying mechanisms. The OGD/R-induced SH-SY5Y cell model and a MCAO mice model were used to assess the neuroprotective effect of HDTL against CI in vitro and in vivo.</div></div><div><h3>Results</h3><div>HDTL reduced inflammation in LPS-stimulated BV2 cells by inhibiting the IKK/IκB/NF-κB pathway and by enhancing AMPK phosphorylation. Additionally, in SH-SY5Y cells treated with OGD/R, HDTL facilitated autophagy and reduced apoptosis. The neuroprotective properties of HDTL were abrogated in AMPK- silenced SH-SY5Y cells. In MCAO mice, HDTL ameliorated CI injury as evidenced by decreases in neurological deficit scores and cerebral infarction. HDTL also promoted autophagy and reduced apoptosis in vivo through both the AMPK/mTOR and IKK/IκB/NF-κB pathways.</div></div><div><h3>Conclusion</h3><div>HDTL exhibits neuroprotective effects through regulating the AMPK/mTOR and IKK/IκB/NF-κB pathways. These findings suggest that HDTL is a promising therapeutic candidate for CI treatment.</div></div>\",\"PeriodicalId\":20212,\"journal\":{\"name\":\"Phytomedicine\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2024-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Phytomedicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0944711324008146\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Phytomedicine","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0944711324008146","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
4-Hydroxydictyolactone alleviates cerebral ischemia injury by regulating neuroinflammation and autophagy via AMPK signaling pathway
Background
Cerebral ischemia (CI), a cerebrovascular disorder, is a major contributor to disability and mortality. Marine-derived compounds are an important source of new neuroprotective drug candidates. Xenicane-type diterpenes from brown algae of the genus Dictyota have exhibited potential neuroprotective effects against CI injury, attributed to their antioxidant properties. However, whether there are other underlying neuroprotective mechanisms of xenicane diterpenes against CI is still ambiguous.
Purpose
This study aims to elucidate the neuroprotective efficacy and mechanism of 4-hydroxydictyolactone (HDTL) in the treatment of CI.
Methods
The LPS-induced BV2 cell model was used for anti-neuroinflammatory activity assay. Tandem Mass Tag (TMT)-based quantitative proteomics was employed to identify underlying mechanisms. The OGD/R-induced SH-SY5Y cell model and a MCAO mice model were used to assess the neuroprotective effect of HDTL against CI in vitro and in vivo.
Results
HDTL reduced inflammation in LPS-stimulated BV2 cells by inhibiting the IKK/IκB/NF-κB pathway and by enhancing AMPK phosphorylation. Additionally, in SH-SY5Y cells treated with OGD/R, HDTL facilitated autophagy and reduced apoptosis. The neuroprotective properties of HDTL were abrogated in AMPK- silenced SH-SY5Y cells. In MCAO mice, HDTL ameliorated CI injury as evidenced by decreases in neurological deficit scores and cerebral infarction. HDTL also promoted autophagy and reduced apoptosis in vivo through both the AMPK/mTOR and IKK/IκB/NF-κB pathways.
Conclusion
HDTL exhibits neuroprotective effects through regulating the AMPK/mTOR and IKK/IκB/NF-κB pathways. These findings suggest that HDTL is a promising therapeutic candidate for CI treatment.
期刊介绍:
Phytomedicine is a therapy-oriented journal that publishes innovative studies on the efficacy, safety, quality, and mechanisms of action of specified plant extracts, phytopharmaceuticals, and their isolated constituents. This includes clinical, pharmacological, pharmacokinetic, and toxicological studies of herbal medicinal products, preparations, and purified compounds with defined and consistent quality, ensuring reproducible pharmacological activity. Founded in 1994, Phytomedicine aims to focus and stimulate research in this field and establish internationally accepted scientific standards for pharmacological studies, proof of clinical efficacy, and safety of phytomedicines.