{"title":"洞察药用兰花金钗石斛和欧石斛多糖和生物碱合成的差异","authors":"Yu-Wen Zhang, Yu-Cen Shi, Wei Huang, Shi-Bao Zhang","doi":"10.1111/ppl.14575","DOIUrl":null,"url":null,"abstract":"<p><p>Both Dendrobium nobile and D. officinale are widely used medicinal plants in China and their major medicinal components are alkaloids and polysaccharides, respectively. It is still unclear why these two closely related orchids synthesize and accumulate different chemical components. Here, we investigated the molecular mechanisms underlying polysaccharide and alkaloid biosynthesis in D. nobile and D. officinale through transcriptome and metabolomic analysis at different growth stages. A total of 1267 metabolites were identified in the juvenile and mature stages of the two species. D. nobile accumulated a large number of alkaloids, benzenoids/phenylpropanoids, flavonoids, and terpenoids during the transition from juvenile to mature plants. In contrast, D. officinale accumulated a small number of those metabolites and an absence of flavonoids. The correlation analysis of polysaccharide contents with the differentially expressed genes suggested that the differential expression of GH1, GH3, and GH9 might be related to the difference in polysaccharide contents between the two Dendrobium species. Meanwhile, the difference in the biosynthesis of dendrobine, the main component of alkaloids in D. nobile, was involved in the differential expression of HMGCR, DXR, DXS, ISPH and eight CYP450s. These findings provided new insights into understanding the biosynthetic mechanisms of the main medicinal components in Dendrobium species.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"176 5","pages":"e14575"},"PeriodicalIF":5.4000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Insights into the Differences in Polysaccharide and Alkaloid Biosynthesis in the Medicinal Orchids Dendrobium nobile and D. officinale.\",\"authors\":\"Yu-Wen Zhang, Yu-Cen Shi, Wei Huang, Shi-Bao Zhang\",\"doi\":\"10.1111/ppl.14575\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Both Dendrobium nobile and D. officinale are widely used medicinal plants in China and their major medicinal components are alkaloids and polysaccharides, respectively. It is still unclear why these two closely related orchids synthesize and accumulate different chemical components. Here, we investigated the molecular mechanisms underlying polysaccharide and alkaloid biosynthesis in D. nobile and D. officinale through transcriptome and metabolomic analysis at different growth stages. A total of 1267 metabolites were identified in the juvenile and mature stages of the two species. D. nobile accumulated a large number of alkaloids, benzenoids/phenylpropanoids, flavonoids, and terpenoids during the transition from juvenile to mature plants. In contrast, D. officinale accumulated a small number of those metabolites and an absence of flavonoids. The correlation analysis of polysaccharide contents with the differentially expressed genes suggested that the differential expression of GH1, GH3, and GH9 might be related to the difference in polysaccharide contents between the two Dendrobium species. Meanwhile, the difference in the biosynthesis of dendrobine, the main component of alkaloids in D. nobile, was involved in the differential expression of HMGCR, DXR, DXS, ISPH and eight CYP450s. These findings provided new insights into understanding the biosynthetic mechanisms of the main medicinal components in Dendrobium species.</p>\",\"PeriodicalId\":20164,\"journal\":{\"name\":\"Physiologia plantarum\",\"volume\":\"176 5\",\"pages\":\"e14575\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physiologia plantarum\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1111/ppl.14575\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiologia plantarum","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/ppl.14575","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Insights into the Differences in Polysaccharide and Alkaloid Biosynthesis in the Medicinal Orchids Dendrobium nobile and D. officinale.
Both Dendrobium nobile and D. officinale are widely used medicinal plants in China and their major medicinal components are alkaloids and polysaccharides, respectively. It is still unclear why these two closely related orchids synthesize and accumulate different chemical components. Here, we investigated the molecular mechanisms underlying polysaccharide and alkaloid biosynthesis in D. nobile and D. officinale through transcriptome and metabolomic analysis at different growth stages. A total of 1267 metabolites were identified in the juvenile and mature stages of the two species. D. nobile accumulated a large number of alkaloids, benzenoids/phenylpropanoids, flavonoids, and terpenoids during the transition from juvenile to mature plants. In contrast, D. officinale accumulated a small number of those metabolites and an absence of flavonoids. The correlation analysis of polysaccharide contents with the differentially expressed genes suggested that the differential expression of GH1, GH3, and GH9 might be related to the difference in polysaccharide contents between the two Dendrobium species. Meanwhile, the difference in the biosynthesis of dendrobine, the main component of alkaloids in D. nobile, was involved in the differential expression of HMGCR, DXR, DXS, ISPH and eight CYP450s. These findings provided new insights into understanding the biosynthetic mechanisms of the main medicinal components in Dendrobium species.
期刊介绍:
Physiologia Plantarum is an international journal committed to publishing the best full-length original research papers that advance our understanding of primary mechanisms of plant development, growth and productivity as well as plant interactions with the biotic and abiotic environment. All organisational levels of experimental plant biology – from molecular and cell biology, biochemistry and biophysics to ecophysiology and global change biology – fall within the scope of the journal. The content is distributed between 5 main subject areas supervised by Subject Editors specialised in the respective domain: (1) biochemistry and metabolism, (2) ecophysiology, stress and adaptation, (3) uptake, transport and assimilation, (4) development, growth and differentiation, (5) photobiology and photosynthesis.