Marianna Avramidou, Vasileios Balaktsis, Olga Tsiouri, Moez Maghrebi, Gianpiero Vigani, Antonios Sergiou, Nikolaos Ntelkis, Constantinos Ehaliotis, Kalliope K Papadopoulou
{"title":"真菌内生菌提高植物对低养分利用率的适应能力:豆科植物获取铁的案例。","authors":"Marianna Avramidou, Vasileios Balaktsis, Olga Tsiouri, Moez Maghrebi, Gianpiero Vigani, Antonios Sergiou, Nikolaos Ntelkis, Constantinos Ehaliotis, Kalliope K Papadopoulou","doi":"10.1111/ppl.14577","DOIUrl":null,"url":null,"abstract":"<p><p>Microbial inocula are considered a promising and effective alternative solution to the use of chemical fertilizers to support plant growth and productivity since they play a key role in the availability and uptake of nutrients. Here, the effect of a beneficial of a fungal root endophyte, Fusarium solani strain K (FsK), on nutrient acquisition efficiency of the legume Lotus japonicus was studied, and putative mode-of-action of the endophyte at a molecular level was determined. Plant colonization with the endophyte resulted in increased shoot and root fresh weight under Fe deficiency compared to control nutrient conditions. Plant inoculation with FsK was associated with a significant increase in macro- and micronutrient concentration in leaves at an early stage of endophyte inoculation and a replenishment of Fe content under prolonged iron starvation. The mechanistic basis of the plant growth promotion capabilities of the endophyte is exerted at the transcriptional level since we recorded changes in the expression levels of genes related to iron uptake in FsK-colonized plants under stress conditions compared to uninoculated plants. In addition, the observed changes in the ethylene biosynthesis-related genes suggest a possible implication of ethylene in the mode of action used by FsK to enhance plant response to nutrient stress conditions. Finally, we demonstrated that the endophyte possesses a reductive high-affinity Fe uptake system and identified a ferric reductase that was induced in planta under Fe deficiency conditions, indicating that this fungal Fe homeostasis mechanism may result in a benefit in nutrient acquisition for the plant as well.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"176 5","pages":"e14577"},"PeriodicalIF":5.4000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A fungal endophyte increases plant resilience to low nutrient availabilities: a case of Fe acquisition in legumes.\",\"authors\":\"Marianna Avramidou, Vasileios Balaktsis, Olga Tsiouri, Moez Maghrebi, Gianpiero Vigani, Antonios Sergiou, Nikolaos Ntelkis, Constantinos Ehaliotis, Kalliope K Papadopoulou\",\"doi\":\"10.1111/ppl.14577\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Microbial inocula are considered a promising and effective alternative solution to the use of chemical fertilizers to support plant growth and productivity since they play a key role in the availability and uptake of nutrients. Here, the effect of a beneficial of a fungal root endophyte, Fusarium solani strain K (FsK), on nutrient acquisition efficiency of the legume Lotus japonicus was studied, and putative mode-of-action of the endophyte at a molecular level was determined. Plant colonization with the endophyte resulted in increased shoot and root fresh weight under Fe deficiency compared to control nutrient conditions. Plant inoculation with FsK was associated with a significant increase in macro- and micronutrient concentration in leaves at an early stage of endophyte inoculation and a replenishment of Fe content under prolonged iron starvation. The mechanistic basis of the plant growth promotion capabilities of the endophyte is exerted at the transcriptional level since we recorded changes in the expression levels of genes related to iron uptake in FsK-colonized plants under stress conditions compared to uninoculated plants. In addition, the observed changes in the ethylene biosynthesis-related genes suggest a possible implication of ethylene in the mode of action used by FsK to enhance plant response to nutrient stress conditions. Finally, we demonstrated that the endophyte possesses a reductive high-affinity Fe uptake system and identified a ferric reductase that was induced in planta under Fe deficiency conditions, indicating that this fungal Fe homeostasis mechanism may result in a benefit in nutrient acquisition for the plant as well.</p>\",\"PeriodicalId\":20164,\"journal\":{\"name\":\"Physiologia plantarum\",\"volume\":\"176 5\",\"pages\":\"e14577\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physiologia plantarum\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1111/ppl.14577\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiologia plantarum","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/ppl.14577","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
A fungal endophyte increases plant resilience to low nutrient availabilities: a case of Fe acquisition in legumes.
Microbial inocula are considered a promising and effective alternative solution to the use of chemical fertilizers to support plant growth and productivity since they play a key role in the availability and uptake of nutrients. Here, the effect of a beneficial of a fungal root endophyte, Fusarium solani strain K (FsK), on nutrient acquisition efficiency of the legume Lotus japonicus was studied, and putative mode-of-action of the endophyte at a molecular level was determined. Plant colonization with the endophyte resulted in increased shoot and root fresh weight under Fe deficiency compared to control nutrient conditions. Plant inoculation with FsK was associated with a significant increase in macro- and micronutrient concentration in leaves at an early stage of endophyte inoculation and a replenishment of Fe content under prolonged iron starvation. The mechanistic basis of the plant growth promotion capabilities of the endophyte is exerted at the transcriptional level since we recorded changes in the expression levels of genes related to iron uptake in FsK-colonized plants under stress conditions compared to uninoculated plants. In addition, the observed changes in the ethylene biosynthesis-related genes suggest a possible implication of ethylene in the mode of action used by FsK to enhance plant response to nutrient stress conditions. Finally, we demonstrated that the endophyte possesses a reductive high-affinity Fe uptake system and identified a ferric reductase that was induced in planta under Fe deficiency conditions, indicating that this fungal Fe homeostasis mechanism may result in a benefit in nutrient acquisition for the plant as well.
期刊介绍:
Physiologia Plantarum is an international journal committed to publishing the best full-length original research papers that advance our understanding of primary mechanisms of plant development, growth and productivity as well as plant interactions with the biotic and abiotic environment. All organisational levels of experimental plant biology – from molecular and cell biology, biochemistry and biophysics to ecophysiology and global change biology – fall within the scope of the journal. The content is distributed between 5 main subject areas supervised by Subject Editors specialised in the respective domain: (1) biochemistry and metabolism, (2) ecophysiology, stress and adaptation, (3) uptake, transport and assimilation, (4) development, growth and differentiation, (5) photobiology and photosynthesis.