Mengyuan Ma, Junying Cheng, Xiaoben Li, Zhuangzhuang Fan, Changqing Wang, Scott B Reeder, Diego Hernando
{"title":"通过蒙特卡洛模拟预测 MRI R 2 * $$ {\\mathrm{R}}_2^{\\ast }通过蒙特卡罗模拟预测肝脏脂肪变性时的弛豫测量。","authors":"Mengyuan Ma, Junying Cheng, Xiaoben Li, Zhuangzhuang Fan, Changqing Wang, Scott B Reeder, Diego Hernando","doi":"10.1002/nbm.5274","DOIUrl":null,"url":null,"abstract":"<p><p>To develop Monte Carlo simulations to predict the relationship of <math> <semantics> <mrow><msubsup><mi>R</mi> <mn>2</mn> <mo>*</mo></msubsup> </mrow> <annotation>$$ {\\mathrm{R}}_2^{\\ast } $$</annotation></semantics> </math> with liver fat content at 1.5 T and 3.0 T. For various fat fractions (FFs) from 1% to 25%, four types of virtual liver models were developed by incorporating the size and spatial distribution of fat droplets. Magnetic fields were then generated under different fat susceptibilities at 1.5 T and 3.0 T, and proton movement was simulated for phase accrual and MRI signal synthesis. The synthesized signal was fit to single-peak and multi-peak fat signal models for <math> <semantics> <mrow><msubsup><mi>R</mi> <mn>2</mn> <mo>*</mo></msubsup> </mrow> <annotation>$$ {\\mathrm{R}}_2^{\\ast } $$</annotation></semantics> </math> and proton density fat fraction (PDFF) predictions. In addition, the relationships between <math> <semantics> <mrow><msubsup><mi>R</mi> <mn>2</mn> <mo>*</mo></msubsup> </mrow> <annotation>$$ {\\mathrm{R}}_2^{\\ast } $$</annotation></semantics> </math> and PDFF predictions were compared with in vivo calibrations and Bland-Altman analysis was performed to quantitatively evaluate the effects of these components (type of virtual liver model, fat susceptibility, and fat signal model) on <math> <semantics> <mrow><msubsup><mi>R</mi> <mn>2</mn> <mo>*</mo></msubsup> </mrow> <annotation>$$ {\\mathrm{R}}_2^{\\ast } $$</annotation></semantics> </math> predictions. A virtual liver model with realistic morphology of fat droplets was demonstrated, and <math> <semantics> <mrow><msubsup><mi>R</mi> <mn>2</mn> <mo>*</mo></msubsup> </mrow> <annotation>$$ {\\mathrm{R}}_2^{\\ast } $$</annotation></semantics> </math> and PDFF values were predicted by Monte Carlo simulations at 1.5 T and 3.0 T. <math> <semantics> <mrow><msubsup><mi>R</mi> <mn>2</mn> <mo>*</mo></msubsup> </mrow> <annotation>$$ {\\mathrm{R}}_2^{\\ast } $$</annotation></semantics> </math> predictions were linearly correlated with PDFF, while the slope was unaffected by the type of virtual liver model and increased as fat susceptibility increased. Compared with in vivo calibrations, the multi-peak fat signal model showed superior performance to the single-peak fat signal model, which yielded an underestimation of liver fat. The <math> <semantics> <mrow><msubsup><mi>R</mi> <mn>2</mn> <mo>*</mo></msubsup> </mrow> <annotation>$$ {\\mathrm{R}}_2^{\\ast } $$</annotation></semantics> </math> -PDFF relationships by simulations with fat susceptibility of 0.6 ppm and the multi-peak fat signal model were <math> <semantics> <mrow><msubsup><mi>R</mi> <mn>2</mn> <mo>*</mo></msubsup> <mo>=</mo> <mn>0.490</mn> <mo>×</mo> <mtext>PDFF</mtext> <mo>+</mo> <mn>28.0</mn></mrow> <annotation>$$ {\\mathrm{R}}_2^{\\ast }=0.490\\times \\mathrm{PDFF}+28.0 $$</annotation></semantics> </math> ( <math> <semantics> <mrow><msup><mi>R</mi> <mn>2</mn></msup> <mo>=</mo> <mn>0.967</mn></mrow> <annotation>$$ {R}^2=0.967 $$</annotation></semantics> </math> , <math> <semantics><mrow><mi>p</mi> <mo><</mo> <mn>0.01</mn></mrow> <annotation>$$ p<0.01 $$</annotation></semantics> </math> ) at 1.5 T and <math> <semantics> <mrow><msubsup><mi>R</mi> <mn>2</mn> <mo>*</mo></msubsup> <mo>=</mo> <mn>0.928</mn> <mo>×</mo> <mtext>PDFF</mtext> <mo>+</mo> <mn>39.4</mn></mrow> <annotation>$$ {\\mathrm{R}}_2^{\\ast }=0.928\\times \\mathrm{PDFF}+39.4 $$</annotation></semantics> </math> ( <math> <semantics> <mrow><msup><mi>R</mi> <mn>2</mn></msup> <mo>=</mo> <mn>0.972</mn></mrow> <annotation>$$ {R}^2=0.972 $$</annotation></semantics> </math> , <math> <semantics><mrow><mi>p</mi> <mo><</mo> <mn>0.01</mn></mrow> <annotation>$$ p<0.01 $$</annotation></semantics> </math> ) at 3.0 T. Monte Carlo simulations provide a new means for <math> <semantics> <mrow><msubsup><mi>R</mi> <mn>2</mn> <mo>*</mo></msubsup> </mrow> <annotation>$$ {\\mathrm{R}}_2^{\\ast } $$</annotation></semantics> </math> -PDFF prediction, which is primarily determined by fat susceptibility, fat signal model, and magnetic field strength. Accurate <math> <semantics> <mrow><msubsup><mi>R</mi> <mn>2</mn> <mo>*</mo></msubsup> </mrow> <annotation>$$ {\\mathrm{R}}_2^{\\ast } $$</annotation></semantics> </math> -PDFF calibration has the potential to correct the effect of fat on <math> <semantics> <mrow><msubsup><mi>R</mi> <mn>2</mn> <mo>*</mo></msubsup> </mrow> <annotation>$$ {\\mathrm{R}}_2^{\\ast } $$</annotation></semantics> </math> quantification, and may be helpful for accurate <math> <semantics> <mrow><msubsup><mi>R</mi> <mn>2</mn> <mo>*</mo></msubsup> </mrow> <annotation>$$ {\\mathrm{R}}_2^{\\ast } $$</annotation></semantics> </math> measurements in liver iron overload.</p>","PeriodicalId":19309,"journal":{"name":"NMR in Biomedicine","volume":" ","pages":"e5274"},"PeriodicalIF":2.7000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"<ArticleTitle xmlns:ns0=\\\"http://www.w3.org/1998/Math/MathML\\\">Prediction of MRI <ns0:math> <ns0:semantics> <ns0:mrow><ns0:msubsup><ns0:mi>R</ns0:mi> <ns0:mn>2</ns0:mn> <ns0:mo>*</ns0:mo></ns0:msubsup> </ns0:mrow> <ns0:annotation>$$ {\\\\mathrm{R}}_2^{\\\\ast } $$</ns0:annotation></ns0:semantics> </ns0:math> relaxometry in the presence of hepatic steatosis by Monte Carlo simulations.\",\"authors\":\"Mengyuan Ma, Junying Cheng, Xiaoben Li, Zhuangzhuang Fan, Changqing Wang, Scott B Reeder, Diego Hernando\",\"doi\":\"10.1002/nbm.5274\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>To develop Monte Carlo simulations to predict the relationship of <math> <semantics> <mrow><msubsup><mi>R</mi> <mn>2</mn> <mo>*</mo></msubsup> </mrow> <annotation>$$ {\\\\mathrm{R}}_2^{\\\\ast } $$</annotation></semantics> </math> with liver fat content at 1.5 T and 3.0 T. For various fat fractions (FFs) from 1% to 25%, four types of virtual liver models were developed by incorporating the size and spatial distribution of fat droplets. Magnetic fields were then generated under different fat susceptibilities at 1.5 T and 3.0 T, and proton movement was simulated for phase accrual and MRI signal synthesis. The synthesized signal was fit to single-peak and multi-peak fat signal models for <math> <semantics> <mrow><msubsup><mi>R</mi> <mn>2</mn> <mo>*</mo></msubsup> </mrow> <annotation>$$ {\\\\mathrm{R}}_2^{\\\\ast } $$</annotation></semantics> </math> and proton density fat fraction (PDFF) predictions. In addition, the relationships between <math> <semantics> <mrow><msubsup><mi>R</mi> <mn>2</mn> <mo>*</mo></msubsup> </mrow> <annotation>$$ {\\\\mathrm{R}}_2^{\\\\ast } $$</annotation></semantics> </math> and PDFF predictions were compared with in vivo calibrations and Bland-Altman analysis was performed to quantitatively evaluate the effects of these components (type of virtual liver model, fat susceptibility, and fat signal model) on <math> <semantics> <mrow><msubsup><mi>R</mi> <mn>2</mn> <mo>*</mo></msubsup> </mrow> <annotation>$$ {\\\\mathrm{R}}_2^{\\\\ast } $$</annotation></semantics> </math> predictions. A virtual liver model with realistic morphology of fat droplets was demonstrated, and <math> <semantics> <mrow><msubsup><mi>R</mi> <mn>2</mn> <mo>*</mo></msubsup> </mrow> <annotation>$$ {\\\\mathrm{R}}_2^{\\\\ast } $$</annotation></semantics> </math> and PDFF values were predicted by Monte Carlo simulations at 1.5 T and 3.0 T. <math> <semantics> <mrow><msubsup><mi>R</mi> <mn>2</mn> <mo>*</mo></msubsup> </mrow> <annotation>$$ {\\\\mathrm{R}}_2^{\\\\ast } $$</annotation></semantics> </math> predictions were linearly correlated with PDFF, while the slope was unaffected by the type of virtual liver model and increased as fat susceptibility increased. Compared with in vivo calibrations, the multi-peak fat signal model showed superior performance to the single-peak fat signal model, which yielded an underestimation of liver fat. The <math> <semantics> <mrow><msubsup><mi>R</mi> <mn>2</mn> <mo>*</mo></msubsup> </mrow> <annotation>$$ {\\\\mathrm{R}}_2^{\\\\ast } $$</annotation></semantics> </math> -PDFF relationships by simulations with fat susceptibility of 0.6 ppm and the multi-peak fat signal model were <math> <semantics> <mrow><msubsup><mi>R</mi> <mn>2</mn> <mo>*</mo></msubsup> <mo>=</mo> <mn>0.490</mn> <mo>×</mo> <mtext>PDFF</mtext> <mo>+</mo> <mn>28.0</mn></mrow> <annotation>$$ {\\\\mathrm{R}}_2^{\\\\ast }=0.490\\\\times \\\\mathrm{PDFF}+28.0 $$</annotation></semantics> </math> ( <math> <semantics> <mrow><msup><mi>R</mi> <mn>2</mn></msup> <mo>=</mo> <mn>0.967</mn></mrow> <annotation>$$ {R}^2=0.967 $$</annotation></semantics> </math> , <math> <semantics><mrow><mi>p</mi> <mo><</mo> <mn>0.01</mn></mrow> <annotation>$$ p<0.01 $$</annotation></semantics> </math> ) at 1.5 T and <math> <semantics> <mrow><msubsup><mi>R</mi> <mn>2</mn> <mo>*</mo></msubsup> <mo>=</mo> <mn>0.928</mn> <mo>×</mo> <mtext>PDFF</mtext> <mo>+</mo> <mn>39.4</mn></mrow> <annotation>$$ {\\\\mathrm{R}}_2^{\\\\ast }=0.928\\\\times \\\\mathrm{PDFF}+39.4 $$</annotation></semantics> </math> ( <math> <semantics> <mrow><msup><mi>R</mi> <mn>2</mn></msup> <mo>=</mo> <mn>0.972</mn></mrow> <annotation>$$ {R}^2=0.972 $$</annotation></semantics> </math> , <math> <semantics><mrow><mi>p</mi> <mo><</mo> <mn>0.01</mn></mrow> <annotation>$$ p<0.01 $$</annotation></semantics> </math> ) at 3.0 T. Monte Carlo simulations provide a new means for <math> <semantics> <mrow><msubsup><mi>R</mi> <mn>2</mn> <mo>*</mo></msubsup> </mrow> <annotation>$$ {\\\\mathrm{R}}_2^{\\\\ast } $$</annotation></semantics> </math> -PDFF prediction, which is primarily determined by fat susceptibility, fat signal model, and magnetic field strength. Accurate <math> <semantics> <mrow><msubsup><mi>R</mi> <mn>2</mn> <mo>*</mo></msubsup> </mrow> <annotation>$$ {\\\\mathrm{R}}_2^{\\\\ast } $$</annotation></semantics> </math> -PDFF calibration has the potential to correct the effect of fat on <math> <semantics> <mrow><msubsup><mi>R</mi> <mn>2</mn> <mo>*</mo></msubsup> </mrow> <annotation>$$ {\\\\mathrm{R}}_2^{\\\\ast } $$</annotation></semantics> </math> quantification, and may be helpful for accurate <math> <semantics> <mrow><msubsup><mi>R</mi> <mn>2</mn> <mo>*</mo></msubsup> </mrow> <annotation>$$ {\\\\mathrm{R}}_2^{\\\\ast } $$</annotation></semantics> </math> measurements in liver iron overload.</p>\",\"PeriodicalId\":19309,\"journal\":{\"name\":\"NMR in Biomedicine\",\"volume\":\" \",\"pages\":\"e5274\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NMR in Biomedicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/nbm.5274\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/12 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NMR in Biomedicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/nbm.5274","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/12 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
摘要
通过蒙特卡罗模拟来预测R 2 * $$ {\mathrm{R}}_2^{\ast }$在1.5 T和3.0 T下与肝脏脂肪含量的关系。针对从1%到25%的不同脂肪比例,结合脂肪滴的大小和空间分布,建立了四种虚拟肝脏模型。然后在 1.5 T 和 3.0 T 的不同脂肪感度下产生磁场,并模拟质子运动进行相位累积和磁共振成像信号合成。合成的信号与单峰和多峰脂肪信号模型进行了拟合,拟合结果为 R 2 * $$ {m\mathrm{R}}_2^{\ast }$ 和质子密度脂肪分数。$$ 和质子密度脂肪分数 (PDFF) 预测。此外,R 2 * $$ {\mathrm{R}}_2^{\ast }$ 与质子密度脂肪分数预测值之间的关系也是如此。$$ 和质子密度脂肪分数预测值之间的关系与体内校准值进行了比较,并进行了布兰-阿尔特曼分析,以定量评估这些成分(虚拟肝脏模型类型、脂肪易感性和脂肪信号模型)对 R 2 * $$ {\mathrm{R}}_2^{\ast }$ 预测值的影响。$$ 预测。演示了具有逼真脂肪滴形态的虚拟肝脏模型,R 2 * $$ {\mathrm{R}}_2^{\ast }$ 和 PDFF 值均由该模型预测。R 2 * $$ {\mathrm{R}}_2^{\ast }$ 的预测值与 PDFF 值在 1.5 T 和 3.0 T 下呈线性相关。$$ 预测值与 PDFF 呈线性相关,斜率不受虚拟肝脏模型类型的影响,并且随着脂肪敏感性的增加而增加。与体内校准相比,多峰值脂肪信号模型的性能优于单峰值脂肪信号模型,后者低估了肝脏脂肪的含量。R 2 * $$ {\mathrm{R}}_2^{\ast }$ 与 PDFF 的关系$$ -PDFF 关系为 R 2 * = 0.490 × PDFF + 28.0 $$ {\mathrm{R}}_2^{\ast }=0.490\times \mathrm{PDFF}+28.0 $$ (R 2 = 0.967 $$ {R}^2=0.967 $$ , p 0.01 $ p )在 1.5 T 和 R 2 * = 0.928 × PDFF + 39.4 $$ {\mathrm{R}}_2^{\ast }=0.928 次 \mathrm{PDFF}+39.4 $$ ( R 2 = 0.蒙特卡罗模拟为 R 2 * $$ {\mathrm{R}}_2^{\ast } 提供了一种新的方法。$$ -PDFF 预测的新方法,它主要由脂肪感度、脂肪信号模型和磁场强度决定。精确的 R 2 * $$ {\mathrm{R}}_2^{\ast }$$ -PDFF 校准有可能纠正脂肪对 R 2 * $$ {\mathrm{R}}_2^{\ast } 的影响。$$ 定量,并可能有助于肝脏铁过量时 R 2 * $$ {\mathrm{R}}_2^{\ast }$ 的精确测量。$$ 测量肝脏铁超载。在本研究中,我们对肝脏脂肪变性进行了蒙特卡罗模拟,以预测 R 2 * $$ {\mathrm{R}}_2^{\ast }$ 与 PDFF 之间的关系。$$ 和 PDFF 之间的关系。此外,还评估了脂肪滴形态、脂肪易感性、脂肪信号模型和磁场强度对 R 2 *$ {\mathrm{R}}_2^{\ast }$ -PDFF 校准的影响。$$ -PDFF 校准。我们的结果表明,蒙特卡罗模拟为 R 2 * $$ {\mathrm{R}}_2^{\ast }$ -PDFF 预测提供了一种新方法。$$ -PDFF 预测的新方法,而且这种方法可以很容易地用于各种情况,如更高磁场和不同回波时间的模拟,以及用于肝脏铁定量的磁感应强度测量的校正。
Prediction of MRI R2*$$ {\mathrm{R}}_2^{\ast } $$ relaxometry in the presence of hepatic steatosis by Monte Carlo simulations.
To develop Monte Carlo simulations to predict the relationship of with liver fat content at 1.5 T and 3.0 T. For various fat fractions (FFs) from 1% to 25%, four types of virtual liver models were developed by incorporating the size and spatial distribution of fat droplets. Magnetic fields were then generated under different fat susceptibilities at 1.5 T and 3.0 T, and proton movement was simulated for phase accrual and MRI signal synthesis. The synthesized signal was fit to single-peak and multi-peak fat signal models for and proton density fat fraction (PDFF) predictions. In addition, the relationships between and PDFF predictions were compared with in vivo calibrations and Bland-Altman analysis was performed to quantitatively evaluate the effects of these components (type of virtual liver model, fat susceptibility, and fat signal model) on predictions. A virtual liver model with realistic morphology of fat droplets was demonstrated, and and PDFF values were predicted by Monte Carlo simulations at 1.5 T and 3.0 T. predictions were linearly correlated with PDFF, while the slope was unaffected by the type of virtual liver model and increased as fat susceptibility increased. Compared with in vivo calibrations, the multi-peak fat signal model showed superior performance to the single-peak fat signal model, which yielded an underestimation of liver fat. The -PDFF relationships by simulations with fat susceptibility of 0.6 ppm and the multi-peak fat signal model were ( , ) at 1.5 T and ( , ) at 3.0 T. Monte Carlo simulations provide a new means for -PDFF prediction, which is primarily determined by fat susceptibility, fat signal model, and magnetic field strength. Accurate -PDFF calibration has the potential to correct the effect of fat on quantification, and may be helpful for accurate measurements in liver iron overload.
期刊介绍:
NMR in Biomedicine is a journal devoted to the publication of original full-length papers, rapid communications and review articles describing the development of magnetic resonance spectroscopy or imaging methods or their use to investigate physiological, biochemical, biophysical or medical problems. Topics for submitted papers should be in one of the following general categories: (a) development of methods and instrumentation for MR of biological systems; (b) studies of normal or diseased organs, tissues or cells; (c) diagnosis or treatment of disease. Reports may cover work on patients or healthy human subjects, in vivo animal experiments, studies of isolated organs or cultured cells, analysis of tissue extracts, NMR theory, experimental techniques, or instrumentation.