{"title":"光照对健康男性起床后的警觉性的影响:比较暗光、强光、红光和蓝光","authors":"Liza Mekschrat, Torsten Straßer, Shiwa Ghassabei, Bjarne Schmalbach, Mathias Niedling, Katja Petrowski","doi":"10.1159/000541230","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Light is a key factor in moderating human alertness, both subjective and objective. However, the methodology applies in research on the effects of exposure to light of different wavelengths and intensities on objective and subjective alertness varies greatly and evidence on objective alertness in particular is still inconclusive. Thus, the present, highly standardized within-subject laboratory study on N = 44 healthy males explored how LED light of different intensities (dim vs. bright light) and wavelengths (red vs. blue) affected objective (reaction time/RT) as well as subjective (sleepiness) alertness in the morning after wake-up.</p><p><strong>Methods: </strong>Participants spent two separate nights in the laboratory and were exposed to either one of the two light intensities or colors for 60 min after wake-up. Additionally, they indicated their sleepiness on the Karolinska Sleepiness Scale and participated in an auditory RT task before and after light intervention. It was hypothesized that both bright and blue light would lead to greater subjective and objective alertness when compared to dim and red light, respectively.</p><p><strong>Results: </strong>Results indicated that average RTs were longer for participants in the bright light condition (p = 0.004, f2 = 0.07) and that RTs decreased post-light exposure irrespective of light being dim or bright (p = 0.026, f2 = 0.07). However, dim versus bright light and RT did not interact (p = 0.758, f2 = 0.07). Chronotype was a significant covariate in the interaction of dim versus bright light and subjective sleepiness (p = 0.008, f2 = 0.22). There was no difference in RTs when comparing exposure to red or blue light (p = 0.488, f2 = 0.01). Findings on subjective sleepiness and light of different wavelengths revealed that sleepiness was reduced after light exposure (p = 0.007, f2 = 0.06), although the wavelength of light did not appear to play a role in this effect (p = 0.817, f2 = 0.06).</p><p><strong>Conclusion: </strong>Hence, neither of the hypotheses could be confirmed. However, they indicated that evening types might benefit from exposure to bright light regarding sleepiness, but not morning types.</p>","PeriodicalId":19239,"journal":{"name":"Neuropsychobiology","volume":" ","pages":"183-192"},"PeriodicalIF":2.3000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Light Exposure on Alertness after Wake-Up in Healthy Men: Comparing Dim, Bright, Red, and Blue Light.\",\"authors\":\"Liza Mekschrat, Torsten Straßer, Shiwa Ghassabei, Bjarne Schmalbach, Mathias Niedling, Katja Petrowski\",\"doi\":\"10.1159/000541230\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Light is a key factor in moderating human alertness, both subjective and objective. However, the methodology applies in research on the effects of exposure to light of different wavelengths and intensities on objective and subjective alertness varies greatly and evidence on objective alertness in particular is still inconclusive. Thus, the present, highly standardized within-subject laboratory study on N = 44 healthy males explored how LED light of different intensities (dim vs. bright light) and wavelengths (red vs. blue) affected objective (reaction time/RT) as well as subjective (sleepiness) alertness in the morning after wake-up.</p><p><strong>Methods: </strong>Participants spent two separate nights in the laboratory and were exposed to either one of the two light intensities or colors for 60 min after wake-up. Additionally, they indicated their sleepiness on the Karolinska Sleepiness Scale and participated in an auditory RT task before and after light intervention. It was hypothesized that both bright and blue light would lead to greater subjective and objective alertness when compared to dim and red light, respectively.</p><p><strong>Results: </strong>Results indicated that average RTs were longer for participants in the bright light condition (p = 0.004, f2 = 0.07) and that RTs decreased post-light exposure irrespective of light being dim or bright (p = 0.026, f2 = 0.07). However, dim versus bright light and RT did not interact (p = 0.758, f2 = 0.07). Chronotype was a significant covariate in the interaction of dim versus bright light and subjective sleepiness (p = 0.008, f2 = 0.22). There was no difference in RTs when comparing exposure to red or blue light (p = 0.488, f2 = 0.01). Findings on subjective sleepiness and light of different wavelengths revealed that sleepiness was reduced after light exposure (p = 0.007, f2 = 0.06), although the wavelength of light did not appear to play a role in this effect (p = 0.817, f2 = 0.06).</p><p><strong>Conclusion: </strong>Hence, neither of the hypotheses could be confirmed. However, they indicated that evening types might benefit from exposure to bright light regarding sleepiness, but not morning types.</p>\",\"PeriodicalId\":19239,\"journal\":{\"name\":\"Neuropsychobiology\",\"volume\":\" \",\"pages\":\"183-192\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuropsychobiology\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1159/000541230\",\"RegionNum\":4,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/11 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuropsychobiology","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1159/000541230","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/11 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Light Exposure on Alertness after Wake-Up in Healthy Men: Comparing Dim, Bright, Red, and Blue Light.
Introduction: Light is a key factor in moderating human alertness, both subjective and objective. However, the methodology applies in research on the effects of exposure to light of different wavelengths and intensities on objective and subjective alertness varies greatly and evidence on objective alertness in particular is still inconclusive. Thus, the present, highly standardized within-subject laboratory study on N = 44 healthy males explored how LED light of different intensities (dim vs. bright light) and wavelengths (red vs. blue) affected objective (reaction time/RT) as well as subjective (sleepiness) alertness in the morning after wake-up.
Methods: Participants spent two separate nights in the laboratory and were exposed to either one of the two light intensities or colors for 60 min after wake-up. Additionally, they indicated their sleepiness on the Karolinska Sleepiness Scale and participated in an auditory RT task before and after light intervention. It was hypothesized that both bright and blue light would lead to greater subjective and objective alertness when compared to dim and red light, respectively.
Results: Results indicated that average RTs were longer for participants in the bright light condition (p = 0.004, f2 = 0.07) and that RTs decreased post-light exposure irrespective of light being dim or bright (p = 0.026, f2 = 0.07). However, dim versus bright light and RT did not interact (p = 0.758, f2 = 0.07). Chronotype was a significant covariate in the interaction of dim versus bright light and subjective sleepiness (p = 0.008, f2 = 0.22). There was no difference in RTs when comparing exposure to red or blue light (p = 0.488, f2 = 0.01). Findings on subjective sleepiness and light of different wavelengths revealed that sleepiness was reduced after light exposure (p = 0.007, f2 = 0.06), although the wavelength of light did not appear to play a role in this effect (p = 0.817, f2 = 0.06).
Conclusion: Hence, neither of the hypotheses could be confirmed. However, they indicated that evening types might benefit from exposure to bright light regarding sleepiness, but not morning types.
期刊介绍:
The biological approach to mental disorders continues to yield innovative findings of clinical importance, particularly if methodologies are combined. This journal collects high quality empirical studies from various experimental and clinical approaches in the fields of Biological Psychiatry, Biological Psychology and Neuropsychology. It features original, clinical and basic research in the fields of neurophysiology and functional imaging, neuropharmacology and neurochemistry, neuroendocrinology and neuroimmunology, genetics and their relationships with normal psychology and psychopathology. In addition, the reader will find studies on animal models of mental disorders and therapeutic interventions, and pharmacoelectroencephalographic studies. Regular reviews report new methodologic approaches, and selected case reports provide hints for future research. ''Neuropsychobiology'' is a complete record of strategies and methodologies employed to study the biological basis of mental functions including their interactions with psychological and social factors.