同心双纳米环中的磁化态和耦合自旋波模式

IF 4.4 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Nanomaterials Pub Date : 2024-10-02 DOI:10.3390/nano14191594
Bushra Hussain, Michael G Cottam
{"title":"同心双纳米环中的磁化态和耦合自旋波模式","authors":"Bushra Hussain, Michael G Cottam","doi":"10.3390/nano14191594","DOIUrl":null,"url":null,"abstract":"<p><p>Concentric multiple nanorings have previously been fabricated and investigated mainly for their different static magnetization states. Here, we present a theoretical analysis for the magnetization dynamics in double nanorings arranged concentrically, where there is coupling across a nonmagnetic spacer due to the long-range dipole-dipole interactions. We employ a microscopic, or Hamiltonian-based, formalism to study the discrete spin waves that exist in the magnetic states where the individual rings may be in either a vortex or an onion state. Numerical results are shown for the frequencies and the spatial amplitudes (with relative phase included) of the spin-wave modes. Cases are considered in which the magnetic materials of the rings are the same (taken to be permalloy) or two different materials such as permalloy and cobalt. The dependence of these properties on the mean radial position of the spacer were studied, showing, in most cases, the existence of two distinct transition fields. The special cases, where the radial spacer width becomes very small (less than 1 nm) were analyzed to study direct interfaces between dissimilar materials and/or effects of interfacial exchange interactions such as Ruderman-Kittel-Kasuya-Yoshida coupling. These spin-wave properties may be of importance for magnetic switching devices and sensors.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11478674/pdf/","citationCount":"0","resultStr":"{\"title\":\"Magnetization States and Coupled Spin-Wave Modes in Concentric Double Nanorings.\",\"authors\":\"Bushra Hussain, Michael G Cottam\",\"doi\":\"10.3390/nano14191594\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Concentric multiple nanorings have previously been fabricated and investigated mainly for their different static magnetization states. Here, we present a theoretical analysis for the magnetization dynamics in double nanorings arranged concentrically, where there is coupling across a nonmagnetic spacer due to the long-range dipole-dipole interactions. We employ a microscopic, or Hamiltonian-based, formalism to study the discrete spin waves that exist in the magnetic states where the individual rings may be in either a vortex or an onion state. Numerical results are shown for the frequencies and the spatial amplitudes (with relative phase included) of the spin-wave modes. Cases are considered in which the magnetic materials of the rings are the same (taken to be permalloy) or two different materials such as permalloy and cobalt. The dependence of these properties on the mean radial position of the spacer were studied, showing, in most cases, the existence of two distinct transition fields. The special cases, where the radial spacer width becomes very small (less than 1 nm) were analyzed to study direct interfaces between dissimilar materials and/or effects of interfacial exchange interactions such as Ruderman-Kittel-Kasuya-Yoshida coupling. These spin-wave properties may be of importance for magnetic switching devices and sensors.</p>\",\"PeriodicalId\":18966,\"journal\":{\"name\":\"Nanomaterials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11478674/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanomaterials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.3390/nano14191594\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/nano14191594","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

同心多重纳米环之前已被制造出来,并主要针对其不同的静态磁化状态进行了研究。在这里,我们对同心排列的双纳米环的磁化动态进行了理论分析,在这种情况下,由于长程偶极子-偶极子相互作用,非磁性间隔存在耦合。我们采用一种微观或基于哈密顿的形式主义来研究磁态中存在的离散自旋波,在这种磁态中,单个磁环可能处于涡旋态或洋葱态。数值结果显示了自旋波模式的频率和空间振幅(包括相对相位)。研究考虑了磁环材料相同(假设为高合金)或两种不同材料(如高合金和钴)的情况。研究了这些特性与间隔物平均径向位置的关系,结果表明,在大多数情况下,存在两个不同的过渡场。对径向间隔宽度变得非常小(小于 1 nm)的特殊情况进行了分析,以研究不同材料之间的直接界面和/或界面交换相互作用的影响,如 Ruderman-Kittel-Kasuya-Yoshida 耦合。这些自旋波特性可能对磁开关器件和传感器具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Magnetization States and Coupled Spin-Wave Modes in Concentric Double Nanorings.

Concentric multiple nanorings have previously been fabricated and investigated mainly for their different static magnetization states. Here, we present a theoretical analysis for the magnetization dynamics in double nanorings arranged concentrically, where there is coupling across a nonmagnetic spacer due to the long-range dipole-dipole interactions. We employ a microscopic, or Hamiltonian-based, formalism to study the discrete spin waves that exist in the magnetic states where the individual rings may be in either a vortex or an onion state. Numerical results are shown for the frequencies and the spatial amplitudes (with relative phase included) of the spin-wave modes. Cases are considered in which the magnetic materials of the rings are the same (taken to be permalloy) or two different materials such as permalloy and cobalt. The dependence of these properties on the mean radial position of the spacer were studied, showing, in most cases, the existence of two distinct transition fields. The special cases, where the radial spacer width becomes very small (less than 1 nm) were analyzed to study direct interfaces between dissimilar materials and/or effects of interfacial exchange interactions such as Ruderman-Kittel-Kasuya-Yoshida coupling. These spin-wave properties may be of importance for magnetic switching devices and sensors.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nanomaterials
Nanomaterials NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
8.50
自引率
9.40%
发文量
3841
审稿时长
14.22 days
期刊介绍: Nanomaterials (ISSN 2076-4991) is an international and interdisciplinary scholarly open access journal. It publishes reviews, regular research papers, communications, and short notes that are relevant to any field of study that involves nanomaterials, with respect to their science and application. Thus, theoretical and experimental articles will be accepted, along with articles that deal with the synthesis and use of nanomaterials. Articles that synthesize information from multiple fields, and which place discoveries within a broader context, will be preferred. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental or methodical details, or both, must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Nanomaterials is dedicated to a high scientific standard. All manuscripts undergo a rigorous reviewing process and decisions are based on the recommendations of independent reviewers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信