开启希望:为尖端的多表位登革热病毒疫苗铺平道路。

IF 2.4 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Amtul Wadood Wajeeha, Mamuna Mukhtar, Najam Us Sahar Sadaf Zaidi
{"title":"开启希望:为尖端的多表位登革热病毒疫苗铺平道路。","authors":"Amtul Wadood Wajeeha, Mamuna Mukhtar, Najam Us Sahar Sadaf Zaidi","doi":"10.1007/s12033-024-01294-4","DOIUrl":null,"url":null,"abstract":"<p><p>Dengue fever is a significant health issue in Pakistan, demanding a vaccine effective against all the viral strains. This study employs reverse vaccinology to develop potential dengue vaccine candidates (DVAX I-III). The study thoroughly examined conserved areas of dengue virus serotypes 1-4's structural and non-structural proteins. Key viral proteins were analyzed to find antigenic peptides, which were incorporated into vaccine candidates and potentiated with adjuvants. Computational methods predicted peptide structures and evaluated their binding to immune receptors TLR 2, TLR 4, HLA *A1101, and DRB*401. A molecular dynamics simulation lasting 100 ns of the DVAX II-TLR4 complex at different time intervals clearly indicated that the ligand is attached to the receptor. Normal mode analysis assessed the stability and flexibility of these interactions. Encouragingly, all three vaccine candidates demonstrated favorable interactions with these immune receptors and the potential to induce a robust immune response. These findings suggest their safety and warrant further in vivo studies to evaluate their efficacy for clinical development.</p>","PeriodicalId":18865,"journal":{"name":"Molecular Biotechnology","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unlocking Hope: Paving the Way for a Cutting-Edge Multi-Epitope Dengue Virus Vaccine.\",\"authors\":\"Amtul Wadood Wajeeha, Mamuna Mukhtar, Najam Us Sahar Sadaf Zaidi\",\"doi\":\"10.1007/s12033-024-01294-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Dengue fever is a significant health issue in Pakistan, demanding a vaccine effective against all the viral strains. This study employs reverse vaccinology to develop potential dengue vaccine candidates (DVAX I-III). The study thoroughly examined conserved areas of dengue virus serotypes 1-4's structural and non-structural proteins. Key viral proteins were analyzed to find antigenic peptides, which were incorporated into vaccine candidates and potentiated with adjuvants. Computational methods predicted peptide structures and evaluated their binding to immune receptors TLR 2, TLR 4, HLA *A1101, and DRB*401. A molecular dynamics simulation lasting 100 ns of the DVAX II-TLR4 complex at different time intervals clearly indicated that the ligand is attached to the receptor. Normal mode analysis assessed the stability and flexibility of these interactions. Encouragingly, all three vaccine candidates demonstrated favorable interactions with these immune receptors and the potential to induce a robust immune response. These findings suggest their safety and warrant further in vivo studies to evaluate their efficacy for clinical development.</p>\",\"PeriodicalId\":18865,\"journal\":{\"name\":\"Molecular Biotechnology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Biotechnology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s12033-024-01294-4\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Biotechnology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12033-024-01294-4","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

登革热是巴基斯坦的一个重大健康问题,需要一种能有效预防所有病毒株的疫苗。本研究采用反向疫苗学方法来开发潜在的登革热候选疫苗(DVAX I-III)。该研究彻底检查了登革热病毒血清型 1-4 的结构蛋白和非结构蛋白的保守区域。通过分析关键病毒蛋白,找到了抗原肽,并将其纳入候选疫苗中,用佐剂对其进行增效。计算方法预测了肽的结构,并评估了它们与免疫受体 TLR 2、TLR 4、HLA *A1101 和 DRB*401 的结合情况。对 DVAX II-TLR4 复合物在不同时间间隔内持续 100 毫微秒的分子动力学模拟清楚地表明,配体附着在受体上。正常模式分析评估了这些相互作用的稳定性和灵活性。令人鼓舞的是,所有三种候选疫苗都与这些免疫受体发生了良好的相互作用,并有可能诱导强有力的免疫反应。这些发现表明它们是安全的,因此有必要进行进一步的体内研究,以评估它们在临床开发方面的功效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unlocking Hope: Paving the Way for a Cutting-Edge Multi-Epitope Dengue Virus Vaccine.

Dengue fever is a significant health issue in Pakistan, demanding a vaccine effective against all the viral strains. This study employs reverse vaccinology to develop potential dengue vaccine candidates (DVAX I-III). The study thoroughly examined conserved areas of dengue virus serotypes 1-4's structural and non-structural proteins. Key viral proteins were analyzed to find antigenic peptides, which were incorporated into vaccine candidates and potentiated with adjuvants. Computational methods predicted peptide structures and evaluated their binding to immune receptors TLR 2, TLR 4, HLA *A1101, and DRB*401. A molecular dynamics simulation lasting 100 ns of the DVAX II-TLR4 complex at different time intervals clearly indicated that the ligand is attached to the receptor. Normal mode analysis assessed the stability and flexibility of these interactions. Encouragingly, all three vaccine candidates demonstrated favorable interactions with these immune receptors and the potential to induce a robust immune response. These findings suggest their safety and warrant further in vivo studies to evaluate their efficacy for clinical development.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular Biotechnology
Molecular Biotechnology 医学-生化与分子生物学
CiteScore
4.10
自引率
3.80%
发文量
165
审稿时长
6 months
期刊介绍: Molecular Biotechnology publishes original research papers on the application of molecular biology to both basic and applied research in the field of biotechnology. Particular areas of interest include the following: stability and expression of cloned gene products, cell transformation, gene cloning systems and the production of recombinant proteins, protein purification and analysis, transgenic species, developmental biology, mutation analysis, the applications of DNA fingerprinting, RNA interference, and PCR technology, microarray technology, proteomics, mass spectrometry, bioinformatics, plant molecular biology, microbial genetics, gene probes and the diagnosis of disease, pharmaceutical and health care products, therapeutic agents, vaccines, gene targeting, gene therapy, stem cell technology and tissue engineering, antisense technology, protein engineering and enzyme technology, monoclonal antibodies, glycobiology and glycomics, and agricultural biotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信