新型荧光假单胞菌噬菌体 vB_PF_Y1-MI 的分离、表征和在受污染牛奶中的应用。

IF 2.3 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Guanhua Xuan, Xianjun Liu, Yinfeng Wang, Hong Lin, Xiuping Jiang, Jingxue Wang
{"title":"新型荧光假单胞菌噬菌体 vB_PF_Y1-MI 的分离、表征和在受污染牛奶中的应用。","authors":"Guanhua Xuan, Xianjun Liu, Yinfeng Wang, Hong Lin, Xiuping Jiang, Jingxue Wang","doi":"10.1007/s00438-024-02179-6","DOIUrl":null,"url":null,"abstract":"<p><p>The food industry has incurred substantial losses from contamination by Pseudomonas fluorescens, emphasizing the critical importance of implementing effective control strategies. Phages are potential sterilizers due to their specific killing abilities and the difficulty bacteria face in developing resistance. However, a significant barrier to their development is the lack of diversity among phage types. In this study, we characterized a novel lytic P. fluorescens phage, named vB_PF_Y1-MI. Phage vB_PF_Y1-MI displayed a latent period of nearly 10 min and a high burst size of 1493 PFU/cell. This phage showed good activity over a wide range of temperature (up to 70 °C) and pH (3-12). The genome of phage vB_PF_Y1-MI spans 93,233 bp with a GC content of 45%. It encompasses 174 open-reading frames and 19 tRNA genes, while no lysogeny or virulence-associated genes were detected. Phylogenetic analysis positions it as a novel unassigned evolutionary lineage within the Caudoviricetes class among related dsDNA phages. Our study provides foundational insights into vB_PF_Y1-MI and emphasizes its potential as an effective biological control agent against P. fluorescens. This research offers crucial theoretical groundwork and technical support for subsequent efforts in preventing and controlling P. fluorescens contamination.</p>","PeriodicalId":18816,"journal":{"name":"Molecular Genetics and Genomics","volume":"299 1","pages":"97"},"PeriodicalIF":2.3000,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Isolation, characterization, and application of a novel Pseudomonas fluorescens phage vB_PF_Y1-MI in contaminated milk.\",\"authors\":\"Guanhua Xuan, Xianjun Liu, Yinfeng Wang, Hong Lin, Xiuping Jiang, Jingxue Wang\",\"doi\":\"10.1007/s00438-024-02179-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The food industry has incurred substantial losses from contamination by Pseudomonas fluorescens, emphasizing the critical importance of implementing effective control strategies. Phages are potential sterilizers due to their specific killing abilities and the difficulty bacteria face in developing resistance. However, a significant barrier to their development is the lack of diversity among phage types. In this study, we characterized a novel lytic P. fluorescens phage, named vB_PF_Y1-MI. Phage vB_PF_Y1-MI displayed a latent period of nearly 10 min and a high burst size of 1493 PFU/cell. This phage showed good activity over a wide range of temperature (up to 70 °C) and pH (3-12). The genome of phage vB_PF_Y1-MI spans 93,233 bp with a GC content of 45%. It encompasses 174 open-reading frames and 19 tRNA genes, while no lysogeny or virulence-associated genes were detected. Phylogenetic analysis positions it as a novel unassigned evolutionary lineage within the Caudoviricetes class among related dsDNA phages. Our study provides foundational insights into vB_PF_Y1-MI and emphasizes its potential as an effective biological control agent against P. fluorescens. This research offers crucial theoretical groundwork and technical support for subsequent efforts in preventing and controlling P. fluorescens contamination.</p>\",\"PeriodicalId\":18816,\"journal\":{\"name\":\"Molecular Genetics and Genomics\",\"volume\":\"299 1\",\"pages\":\"97\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Genetics and Genomics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s00438-024-02179-6\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Genetics and Genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00438-024-02179-6","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

荧光假单胞菌污染给食品工业造成了巨大损失,这凸显了实施有效控制策略的极端重要性。噬菌体具有特殊的杀灭能力,细菌难以产生抗药性,因此是潜在的杀菌剂。然而,噬菌体发展的一个重要障碍是噬菌体类型之间缺乏多样性。在这项研究中,我们鉴定了一种新型溶菌性 P. 荧光杆菌噬菌体,并将其命名为 vB_PF_Y1-MI。vB_PF_Y1-MI 噬菌体的潜伏期接近 10 分钟,迸发量高达 1493 PFU/细胞。这种噬菌体在很宽的温度范围(高达 70 °C)和 pH 值范围(3-12)内都表现出良好的活性。vB_PF_Y1-MI 噬菌体的基因组长达 93,233 bp,GC 含量为 45%。它包含 174 个开放读码框和 19 个 tRNA 基因,但没有检测到溶菌酶基因或毒力相关基因。系统进化分析将其定位为 Caudoviricetes 类相关 dsDNA 噬菌体中一个新的未确定进化系。我们的研究提供了对 vB_PF_Y1-MI 的基本认识,并强调了它作为一种有效的荧光粉噬菌体生物控制剂的潜力。这项研究为以后预防和控制 P. fluorescens 污染提供了重要的理论基础和技术支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Isolation, characterization, and application of a novel Pseudomonas fluorescens phage vB_PF_Y1-MI in contaminated milk.

The food industry has incurred substantial losses from contamination by Pseudomonas fluorescens, emphasizing the critical importance of implementing effective control strategies. Phages are potential sterilizers due to their specific killing abilities and the difficulty bacteria face in developing resistance. However, a significant barrier to their development is the lack of diversity among phage types. In this study, we characterized a novel lytic P. fluorescens phage, named vB_PF_Y1-MI. Phage vB_PF_Y1-MI displayed a latent period of nearly 10 min and a high burst size of 1493 PFU/cell. This phage showed good activity over a wide range of temperature (up to 70 °C) and pH (3-12). The genome of phage vB_PF_Y1-MI spans 93,233 bp with a GC content of 45%. It encompasses 174 open-reading frames and 19 tRNA genes, while no lysogeny or virulence-associated genes were detected. Phylogenetic analysis positions it as a novel unassigned evolutionary lineage within the Caudoviricetes class among related dsDNA phages. Our study provides foundational insights into vB_PF_Y1-MI and emphasizes its potential as an effective biological control agent against P. fluorescens. This research offers crucial theoretical groundwork and technical support for subsequent efforts in preventing and controlling P. fluorescens contamination.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular Genetics and Genomics
Molecular Genetics and Genomics 生物-生化与分子生物学
CiteScore
5.10
自引率
3.20%
发文量
134
审稿时长
1 months
期刊介绍: Molecular Genetics and Genomics (MGG) publishes peer-reviewed articles covering all areas of genetics and genomics. Any approach to the study of genes and genomes is considered, be it experimental, theoretical or synthetic. MGG publishes research on all organisms that is of broad interest to those working in the fields of genetics, genomics, biology, medicine and biotechnology. The journal investigates a broad range of topics, including these from recent issues: mechanisms for extending longevity in a variety of organisms; screening of yeast metal homeostasis genes involved in mitochondrial functions; molecular mapping of cultivar-specific avirulence genes in the rice blast fungus and more.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信