{"title":"用于多维力传感和自主避障应用的高灵敏度柔性仿生触手传感器。","authors":"Xinyu Liu, Kunru Li, Shuo Qian, Lixin Niu, Wei Chen, Hui Wu, Xiaoguang Song, Jie Zhang, Xiaoxue Bi, Junbin Yu, Xiaojuan Hou, Jian He, Xiujian Chou","doi":"10.1038/s41378-024-00749-7","DOIUrl":null,"url":null,"abstract":"<p><p>Bionic tentacle sensors are important in various fields, including obstacle avoidance, human‒machine interfaces, and soft robotics. However, most traditional tentacle sensors are based on rigid substrates, resulting in difficulty in detecting multidirectional forces originating from the external environment, which limits their application in complex environments. Herein, we proposed a high-sensitivity flexible bionic tentacle sensors (FBTSs). Specifically, the FBTS featured an ultrahigh sensitivity of 37.6 N<sup>-1</sup> and an ultralow detection limit of 2.4 mN, which benefited from the design of a whisker-like signal amplifier and crossbeam architecture. Moreover, the FBTS exhibited favorable linearity (R<sup>2</sup> = 0.98) and remarkable durability (more than 5000 cycles). This was determined according to the improvement in the uniformity of the sensing layer through a high-shear dispersion process. In addition, the FBTS could accurately distinguish the direction of external stimuli, resulting in the FBTS achieving roughness recognition, wind speed detection and autonomous obstacle avoidance. In particular, the ability of autonomous obstacle avoidance was suitably demonstrated by leading a bionic rat through a maze with the FBTS. Notably, the proposed FBTS could be widely applied in tactile sensing, orientation perception, and obstacle avoidance.</p>","PeriodicalId":18560,"journal":{"name":"Microsystems & Nanoengineering","volume":"10 1","pages":"149"},"PeriodicalIF":7.3000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11491448/pdf/","citationCount":"0","resultStr":"{\"title\":\"A high-sensitivity flexible bionic tentacle sensor for multidimensional force sensing and autonomous obstacle avoidance applications.\",\"authors\":\"Xinyu Liu, Kunru Li, Shuo Qian, Lixin Niu, Wei Chen, Hui Wu, Xiaoguang Song, Jie Zhang, Xiaoxue Bi, Junbin Yu, Xiaojuan Hou, Jian He, Xiujian Chou\",\"doi\":\"10.1038/s41378-024-00749-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Bionic tentacle sensors are important in various fields, including obstacle avoidance, human‒machine interfaces, and soft robotics. However, most traditional tentacle sensors are based on rigid substrates, resulting in difficulty in detecting multidirectional forces originating from the external environment, which limits their application in complex environments. Herein, we proposed a high-sensitivity flexible bionic tentacle sensors (FBTSs). Specifically, the FBTS featured an ultrahigh sensitivity of 37.6 N<sup>-1</sup> and an ultralow detection limit of 2.4 mN, which benefited from the design of a whisker-like signal amplifier and crossbeam architecture. Moreover, the FBTS exhibited favorable linearity (R<sup>2</sup> = 0.98) and remarkable durability (more than 5000 cycles). This was determined according to the improvement in the uniformity of the sensing layer through a high-shear dispersion process. In addition, the FBTS could accurately distinguish the direction of external stimuli, resulting in the FBTS achieving roughness recognition, wind speed detection and autonomous obstacle avoidance. In particular, the ability of autonomous obstacle avoidance was suitably demonstrated by leading a bionic rat through a maze with the FBTS. Notably, the proposed FBTS could be widely applied in tactile sensing, orientation perception, and obstacle avoidance.</p>\",\"PeriodicalId\":18560,\"journal\":{\"name\":\"Microsystems & Nanoengineering\",\"volume\":\"10 1\",\"pages\":\"149\"},\"PeriodicalIF\":7.3000,\"publicationDate\":\"2024-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11491448/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microsystems & Nanoengineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1038/s41378-024-00749-7\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microsystems & Nanoengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1038/s41378-024-00749-7","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
A high-sensitivity flexible bionic tentacle sensor for multidimensional force sensing and autonomous obstacle avoidance applications.
Bionic tentacle sensors are important in various fields, including obstacle avoidance, human‒machine interfaces, and soft robotics. However, most traditional tentacle sensors are based on rigid substrates, resulting in difficulty in detecting multidirectional forces originating from the external environment, which limits their application in complex environments. Herein, we proposed a high-sensitivity flexible bionic tentacle sensors (FBTSs). Specifically, the FBTS featured an ultrahigh sensitivity of 37.6 N-1 and an ultralow detection limit of 2.4 mN, which benefited from the design of a whisker-like signal amplifier and crossbeam architecture. Moreover, the FBTS exhibited favorable linearity (R2 = 0.98) and remarkable durability (more than 5000 cycles). This was determined according to the improvement in the uniformity of the sensing layer through a high-shear dispersion process. In addition, the FBTS could accurately distinguish the direction of external stimuli, resulting in the FBTS achieving roughness recognition, wind speed detection and autonomous obstacle avoidance. In particular, the ability of autonomous obstacle avoidance was suitably demonstrated by leading a bionic rat through a maze with the FBTS. Notably, the proposed FBTS could be widely applied in tactile sensing, orientation perception, and obstacle avoidance.
期刊介绍:
Microsystems & Nanoengineering is a comprehensive online journal that focuses on the field of Micro and Nano Electro Mechanical Systems (MEMS and NEMS). It provides a platform for researchers to share their original research findings and review articles in this area. The journal covers a wide range of topics, from fundamental research to practical applications. Published by Springer Nature, in collaboration with the Aerospace Information Research Institute, Chinese Academy of Sciences, and with the support of the State Key Laboratory of Transducer Technology, it is an esteemed publication in the field. As an open access journal, it offers free access to its content, allowing readers from around the world to benefit from the latest developments in MEMS and NEMS.