Steven McGuigan, Brendan F Abrahams, David A Scott
{"title":"氙气麻醉过程中气体分离和保存技术综述。","authors":"Steven McGuigan, Brendan F Abrahams, David A Scott","doi":"10.4103/mgr.MEDGASRES-D-24-00002","DOIUrl":null,"url":null,"abstract":"<p><p>Xenon gas has significant advantages over conventional general anesthetic agents but its use has been limited by the cost associated with its production. Xenon also has significant potential for medical use in the treatment of acquired brain injuries and for mental health disorders. As the demand for xenon gas from other industries increases, the costs associated with its medical use are only likely to increase. One solution to mitigate the significant cost of xenon use in research or medical care is the conservation of xenon gas. During delivery of xenon anesthesia, this can be achieved either by separating xenon from the other gases within the anesthetic circuit, conserving xenon and allowing other gases to be excluded from the circuit, or by selectively recapturing xenon utilized during the anesthetic episode at the conclusion of the case. Several technologies, including the pressurization and cooling of gas mixtures, the utilization of gas selective membranes and the utilization of gas selective adsorbents have been described in the literature for this purpose. These techniques are described in this narrative review along with important clinical context that informs how these technologies might be best applied. Whilst these technologies are discussed in the context of xenon general anesthesia, they could be applied in the delivery of xenon gas inhalation for other therapeutic purposes.</p>","PeriodicalId":18559,"journal":{"name":"Medical Gas Research","volume":"15 1","pages":"93-100"},"PeriodicalIF":3.0000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11515081/pdf/","citationCount":"0","resultStr":"{\"title\":\"A narrative review of gas separation and conservation technologies during xenon anesthesia.\",\"authors\":\"Steven McGuigan, Brendan F Abrahams, David A Scott\",\"doi\":\"10.4103/mgr.MEDGASRES-D-24-00002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Xenon gas has significant advantages over conventional general anesthetic agents but its use has been limited by the cost associated with its production. Xenon also has significant potential for medical use in the treatment of acquired brain injuries and for mental health disorders. As the demand for xenon gas from other industries increases, the costs associated with its medical use are only likely to increase. One solution to mitigate the significant cost of xenon use in research or medical care is the conservation of xenon gas. During delivery of xenon anesthesia, this can be achieved either by separating xenon from the other gases within the anesthetic circuit, conserving xenon and allowing other gases to be excluded from the circuit, or by selectively recapturing xenon utilized during the anesthetic episode at the conclusion of the case. Several technologies, including the pressurization and cooling of gas mixtures, the utilization of gas selective membranes and the utilization of gas selective adsorbents have been described in the literature for this purpose. These techniques are described in this narrative review along with important clinical context that informs how these technologies might be best applied. Whilst these technologies are discussed in the context of xenon general anesthesia, they could be applied in the delivery of xenon gas inhalation for other therapeutic purposes.</p>\",\"PeriodicalId\":18559,\"journal\":{\"name\":\"Medical Gas Research\",\"volume\":\"15 1\",\"pages\":\"93-100\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11515081/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical Gas Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4103/mgr.MEDGASRES-D-24-00002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/6/26 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical Gas Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4103/mgr.MEDGASRES-D-24-00002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/26 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
A narrative review of gas separation and conservation technologies during xenon anesthesia.
Xenon gas has significant advantages over conventional general anesthetic agents but its use has been limited by the cost associated with its production. Xenon also has significant potential for medical use in the treatment of acquired brain injuries and for mental health disorders. As the demand for xenon gas from other industries increases, the costs associated with its medical use are only likely to increase. One solution to mitigate the significant cost of xenon use in research or medical care is the conservation of xenon gas. During delivery of xenon anesthesia, this can be achieved either by separating xenon from the other gases within the anesthetic circuit, conserving xenon and allowing other gases to be excluded from the circuit, or by selectively recapturing xenon utilized during the anesthetic episode at the conclusion of the case. Several technologies, including the pressurization and cooling of gas mixtures, the utilization of gas selective membranes and the utilization of gas selective adsorbents have been described in the literature for this purpose. These techniques are described in this narrative review along with important clinical context that informs how these technologies might be best applied. Whilst these technologies are discussed in the context of xenon general anesthesia, they could be applied in the delivery of xenon gas inhalation for other therapeutic purposes.
期刊介绍:
Medical Gas Research is an open access journal which publishes basic, translational, and clinical research focusing on the neurobiology as well as multidisciplinary aspects of medical gas research and their applications to related disorders. The journal covers all areas of medical gas research, but also has several special sections. Authors can submit directly to these sections, whose peer-review process is overseen by our distinguished Section Editors: Inert gases - Edited by Xuejun Sun and Mark Coburn, Gasotransmitters - Edited by Atsunori Nakao and John Calvert, Oxygen and diving medicine - Edited by Daniel Rossignol and Ke Jian Liu, Anesthetic gases - Edited by Richard Applegate and Zhongcong Xie, Medical gas in other fields of biology - Edited by John Zhang. Medical gas is a large family including oxygen, hydrogen, carbon monoxide, carbon dioxide, nitrogen, xenon, hydrogen sulfide, nitrous oxide, carbon disulfide, argon, helium and other noble gases. These medical gases are used in multiple fields of clinical practice and basic science research including anesthesiology, hyperbaric oxygen medicine, diving medicine, internal medicine, emergency medicine, surgery, and many basic sciences disciplines such as physiology, pharmacology, biochemistry, microbiology and neurosciences. Due to the unique nature of medical gas practice, Medical Gas Research will serve as an information platform for educational and technological advances in the field of medical gas.