Christopher Leist, Max Makurat, Andy Jiao, Xue Liu, Grégory F Schneider, Ute Kaiser
{"title":"原子分辨纳米晶碳单层中晶界形成的控制:电子能量的依赖性","authors":"Christopher Leist, Max Makurat, Andy Jiao, Xue Liu, Grégory F Schneider, Ute Kaiser","doi":"10.1093/mam/ozae101","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, we explore the dynamics of grain boundaries in nanocrystalline carbon monolayers, focusing on their variation with electron beam energy and electron dose rate in a spherical and chromatic aberration-corrected transmission electron microscope. We demonstrate that a clean surface, a high-dose rate, and a 60 keV electron beam are essential for precise local control over the dynamics of grain boundaries. The structure of these linear defects has been evaluated using neural network-generated polygon mapping.</p>","PeriodicalId":18625,"journal":{"name":"Microscopy and Microanalysis","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Control of Grain Boundary Formation in Atomically Resolved Nanocrystalline Carbon Monolayers: Dependence on Electron Energy.\",\"authors\":\"Christopher Leist, Max Makurat, Andy Jiao, Xue Liu, Grégory F Schneider, Ute Kaiser\",\"doi\":\"10.1093/mam/ozae101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this study, we explore the dynamics of grain boundaries in nanocrystalline carbon monolayers, focusing on their variation with electron beam energy and electron dose rate in a spherical and chromatic aberration-corrected transmission electron microscope. We demonstrate that a clean surface, a high-dose rate, and a 60 keV electron beam are essential for precise local control over the dynamics of grain boundaries. The structure of these linear defects has been evaluated using neural network-generated polygon mapping.</p>\",\"PeriodicalId\":18625,\"journal\":{\"name\":\"Microscopy and Microanalysis\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-02-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microscopy and Microanalysis\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1093/mam/ozae101\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microscopy and Microanalysis","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1093/mam/ozae101","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Control of Grain Boundary Formation in Atomically Resolved Nanocrystalline Carbon Monolayers: Dependence on Electron Energy.
In this study, we explore the dynamics of grain boundaries in nanocrystalline carbon monolayers, focusing on their variation with electron beam energy and electron dose rate in a spherical and chromatic aberration-corrected transmission electron microscope. We demonstrate that a clean surface, a high-dose rate, and a 60 keV electron beam are essential for precise local control over the dynamics of grain boundaries. The structure of these linear defects has been evaluated using neural network-generated polygon mapping.
期刊介绍:
Microscopy and Microanalysis publishes original research papers in the fields of microscopy, imaging, and compositional analysis. This distinguished international forum is intended for microscopists in both biology and materials science. The journal provides significant articles that describe new and existing techniques and instrumentation, as well as the applications of these to the imaging and analysis of microstructure. Microscopy and Microanalysis also includes review articles, letters to the editor, and book reviews.