Jose Borreguero, Fernando Galve, José M Algarín, Joseba Alonso
{"title":"高度不均匀场中的零回波时间序列。","authors":"Jose Borreguero, Fernando Galve, José M Algarín, Joseba Alonso","doi":"10.1002/mrm.30352","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Zero-echo-time (ZTE) sequences have proven a powerful tool for MRI of ultrashort <math> <semantics> <mrow> <msub><mrow><mi>T</mi></mrow> <mrow><mn>2</mn></mrow> </msub> </mrow> <annotation>$$ {T}_2 $$</annotation></semantics> </math> tissues, but they fail to produce useful images in the presence of strong field inhomogeneities (14 000 ppm). Here we seek a method to correct reconstruction artifacts from non-Cartesian acquisitions in highly inhomogeneous <math> <semantics> <mrow> <msub><mrow><mi>B</mi></mrow> <mrow><mn>0</mn></mrow> </msub> </mrow> <annotation>$$ {\\mathrm{B}}_0 $$</annotation></semantics> </math> , where the standard double-shot gradient-echo approach to field mapping fails.</p><p><strong>Methods: </strong>We present a technique based on magnetic field maps obtained from two geometric distortion-free point-wise (SPRITE) acquisitions. To this end, we employ three scanners with varying field homogeneities. These maps are used for model-based image reconstruction with iterative algebraic techniques (ART). For comparison, the same prior information is fed also to widely used Conjugate Phase (CP) algorithms.</p><p><strong>Results: </strong>Distortions and artifacts coming from severe <math> <semantics> <mrow> <msub><mrow><mi>B</mi></mrow> <mrow><mn>0</mn></mrow> </msub> </mrow> <annotation>$$ {\\mathrm{B}}_0 $$</annotation></semantics> </math> inhomogeneities, at the level of the encoding gradient, are largely reverted by our method, as opposed to CP reconstructions. This holds even close to the limit where intra-voxel bandwidths (determined by <math> <semantics> <mrow> <msub><mrow><mi>B</mi></mrow> <mrow><mn>0</mn></mrow> </msub> </mrow> <annotation>$$ {\\mathrm{B}}_0 $$</annotation></semantics> </math> inhomogeneities, up to 1.2 kHz) are comparable to the encoding inter-voxel bandwidth (determined by the gradient fields, 625 Hz in this work).</p><p><strong>Conclusion: </strong>We have benchmarked the performance of a new method for ZTE imaging in highly inhomogeneous magnetic fields. For example, this can be exploited for dental imaging in affordable low-field MRI systems, and can be expanded for arbitrary pulse sequences and extreme magnet geometries, as in, for example, single-sided MRI.</p>","PeriodicalId":18065,"journal":{"name":"Magnetic Resonance in Medicine","volume":" ","pages":"1190-1204"},"PeriodicalIF":3.0000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11680741/pdf/","citationCount":"0","resultStr":"{\"title\":\"Zero-echo-time sequences in highly inhomogeneous fields.\",\"authors\":\"Jose Borreguero, Fernando Galve, José M Algarín, Joseba Alonso\",\"doi\":\"10.1002/mrm.30352\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>Zero-echo-time (ZTE) sequences have proven a powerful tool for MRI of ultrashort <math> <semantics> <mrow> <msub><mrow><mi>T</mi></mrow> <mrow><mn>2</mn></mrow> </msub> </mrow> <annotation>$$ {T}_2 $$</annotation></semantics> </math> tissues, but they fail to produce useful images in the presence of strong field inhomogeneities (14 000 ppm). Here we seek a method to correct reconstruction artifacts from non-Cartesian acquisitions in highly inhomogeneous <math> <semantics> <mrow> <msub><mrow><mi>B</mi></mrow> <mrow><mn>0</mn></mrow> </msub> </mrow> <annotation>$$ {\\\\mathrm{B}}_0 $$</annotation></semantics> </math> , where the standard double-shot gradient-echo approach to field mapping fails.</p><p><strong>Methods: </strong>We present a technique based on magnetic field maps obtained from two geometric distortion-free point-wise (SPRITE) acquisitions. To this end, we employ three scanners with varying field homogeneities. These maps are used for model-based image reconstruction with iterative algebraic techniques (ART). For comparison, the same prior information is fed also to widely used Conjugate Phase (CP) algorithms.</p><p><strong>Results: </strong>Distortions and artifacts coming from severe <math> <semantics> <mrow> <msub><mrow><mi>B</mi></mrow> <mrow><mn>0</mn></mrow> </msub> </mrow> <annotation>$$ {\\\\mathrm{B}}_0 $$</annotation></semantics> </math> inhomogeneities, at the level of the encoding gradient, are largely reverted by our method, as opposed to CP reconstructions. This holds even close to the limit where intra-voxel bandwidths (determined by <math> <semantics> <mrow> <msub><mrow><mi>B</mi></mrow> <mrow><mn>0</mn></mrow> </msub> </mrow> <annotation>$$ {\\\\mathrm{B}}_0 $$</annotation></semantics> </math> inhomogeneities, up to 1.2 kHz) are comparable to the encoding inter-voxel bandwidth (determined by the gradient fields, 625 Hz in this work).</p><p><strong>Conclusion: </strong>We have benchmarked the performance of a new method for ZTE imaging in highly inhomogeneous magnetic fields. For example, this can be exploited for dental imaging in affordable low-field MRI systems, and can be expanded for arbitrary pulse sequences and extreme magnet geometries, as in, for example, single-sided MRI.</p>\",\"PeriodicalId\":18065,\"journal\":{\"name\":\"Magnetic Resonance in Medicine\",\"volume\":\" \",\"pages\":\"1190-1204\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11680741/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Magnetic Resonance in Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/mrm.30352\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/21 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Magnetic Resonance in Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/mrm.30352","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/21 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
摘要
目的:零回波时间(ZTE)序列已被证明是超短 T 2 $$ {T}_2 $$ 组织核磁共振成像的强大工具,但在存在强场不均匀性(14 000 ppm)的情况下无法生成有用的图像。在此,我们寻求一种方法来纠正在高度不均匀的 B 0 $$ {\mathrm{B}}_0 $$ 中进行非笛卡尔采集时产生的重建伪影,在这种情况下,标准的双发梯度回波磁场映射方法将失效:方法:我们提出了一种基于两次几何无畸变点式(SPRITE)采集获得的磁场图的技术。为此,我们采用了三种不同磁场均匀性的扫描仪。这些磁场图通过迭代代数技术(ART)用于基于模型的图像重建。为了进行比较,我们还将相同的先验信息输入到广泛使用的共轭相位(CP)算法中:结果:与 CP 重建相比,我们的方法在很大程度上消除了编码梯度上严重的 B 0 $$ {\mathrm{B}}_0 $$ 不均匀性所造成的失真和伪影。这一点甚至在接近象素内带宽(由 B 0 $$ {\mathrm{B}}_0 $ 不均匀性决定,高达 1.2 kHz)与编码象素间带宽(由梯度场决定,在本研究中为 625 Hz)相当的极限时也是如此:我们对高度不均匀磁场中的中兴成像新方法的性能进行了基准测试。例如,这种方法可在经济实惠的低磁场核磁共振成像系统中用于牙科成像,并可扩展用于任意脉冲序列和极端磁体几何结构,如单面核磁共振成像。
Zero-echo-time sequences in highly inhomogeneous fields.
Purpose: Zero-echo-time (ZTE) sequences have proven a powerful tool for MRI of ultrashort tissues, but they fail to produce useful images in the presence of strong field inhomogeneities (14 000 ppm). Here we seek a method to correct reconstruction artifacts from non-Cartesian acquisitions in highly inhomogeneous , where the standard double-shot gradient-echo approach to field mapping fails.
Methods: We present a technique based on magnetic field maps obtained from two geometric distortion-free point-wise (SPRITE) acquisitions. To this end, we employ three scanners with varying field homogeneities. These maps are used for model-based image reconstruction with iterative algebraic techniques (ART). For comparison, the same prior information is fed also to widely used Conjugate Phase (CP) algorithms.
Results: Distortions and artifacts coming from severe inhomogeneities, at the level of the encoding gradient, are largely reverted by our method, as opposed to CP reconstructions. This holds even close to the limit where intra-voxel bandwidths (determined by inhomogeneities, up to 1.2 kHz) are comparable to the encoding inter-voxel bandwidth (determined by the gradient fields, 625 Hz in this work).
Conclusion: We have benchmarked the performance of a new method for ZTE imaging in highly inhomogeneous magnetic fields. For example, this can be exploited for dental imaging in affordable low-field MRI systems, and can be expanded for arbitrary pulse sequences and extreme magnet geometries, as in, for example, single-sided MRI.
期刊介绍:
Magnetic Resonance in Medicine (Magn Reson Med) is an international journal devoted to the publication of original investigations concerned with all aspects of the development and use of nuclear magnetic resonance and electron paramagnetic resonance techniques for medical applications. Reports of original investigations in the areas of mathematics, computing, engineering, physics, biophysics, chemistry, biochemistry, and physiology directly relevant to magnetic resonance will be accepted, as well as methodology-oriented clinical studies.