Laura Zucaro, Consiglia Longobardi, Antonio Miele, Antonio Villanova, Yoko Suzumoto
{"title":"针对肾脏疾病的纳米载体给药系统。","authors":"Laura Zucaro, Consiglia Longobardi, Antonio Miele, Antonio Villanova, Yoko Suzumoto","doi":"10.1159/000541848","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The potential applications of nanotechnology in the medical field have become increasingly recognized in recent years. Nanocarriers have emerged as a versatile tool, offering a wide range of applications due to their unique properties. In addition to the targeted drugs delivery, nanocarriers have also proven to be extremely effective in imaging and diagnostics. Continuous advances in nanotechnology have paved the way for innovative solutions to complex challenges in human health, shaping the future of nanotechnology and its applications.</p><p><strong>Summary: </strong>By exploring different types of nanoparticles, this review delves into the different characteristics that can be tailored to enhance their kidney access. Although the structural complexity of the kidney may prevent nanocarriers passage, optimization of nanocarrier characteristics such as shape, size, charge, and surface modifications may overcome these barriers, allowing for targeted delivery. By harnessing the potential of nanoparticles, researchers aim to develop targeted and efficient therapies that can address various kidney-related disorders.</p><p><strong>Key messages: </strong>This review highlights the promising advancements in nanotechnology and their potential impact on improving the therapeutic outcomes for several kidney diseases.</p>","PeriodicalId":17813,"journal":{"name":"Kidney & blood pressure research","volume":" ","pages":"884-897"},"PeriodicalIF":2.3000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nanocarrier-Based Drug Delivery Systems Targeting Kidney Diseases.\",\"authors\":\"Laura Zucaro, Consiglia Longobardi, Antonio Miele, Antonio Villanova, Yoko Suzumoto\",\"doi\":\"10.1159/000541848\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>The potential applications of nanotechnology in the medical field have become increasingly recognized in recent years. Nanocarriers have emerged as a versatile tool, offering a wide range of applications due to their unique properties. In addition to the targeted drugs delivery, nanocarriers have also proven to be extremely effective in imaging and diagnostics. Continuous advances in nanotechnology have paved the way for innovative solutions to complex challenges in human health, shaping the future of nanotechnology and its applications.</p><p><strong>Summary: </strong>By exploring different types of nanoparticles, this review delves into the different characteristics that can be tailored to enhance their kidney access. Although the structural complexity of the kidney may prevent nanocarriers passage, optimization of nanocarrier characteristics such as shape, size, charge, and surface modifications may overcome these barriers, allowing for targeted delivery. By harnessing the potential of nanoparticles, researchers aim to develop targeted and efficient therapies that can address various kidney-related disorders.</p><p><strong>Key messages: </strong>This review highlights the promising advancements in nanotechnology and their potential impact on improving the therapeutic outcomes for several kidney diseases.</p>\",\"PeriodicalId\":17813,\"journal\":{\"name\":\"Kidney & blood pressure research\",\"volume\":\" \",\"pages\":\"884-897\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Kidney & blood pressure research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1159/000541848\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/15 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"PERIPHERAL VASCULAR DISEASE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kidney & blood pressure research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1159/000541848","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/15 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"PERIPHERAL VASCULAR DISEASE","Score":null,"Total":0}
Nanocarrier-Based Drug Delivery Systems Targeting Kidney Diseases.
Background: The potential applications of nanotechnology in the medical field have become increasingly recognized in recent years. Nanocarriers have emerged as a versatile tool, offering a wide range of applications due to their unique properties. In addition to the targeted drugs delivery, nanocarriers have also proven to be extremely effective in imaging and diagnostics. Continuous advances in nanotechnology have paved the way for innovative solutions to complex challenges in human health, shaping the future of nanotechnology and its applications.
Summary: By exploring different types of nanoparticles, this review delves into the different characteristics that can be tailored to enhance their kidney access. Although the structural complexity of the kidney may prevent nanocarriers passage, optimization of nanocarrier characteristics such as shape, size, charge, and surface modifications may overcome these barriers, allowing for targeted delivery. By harnessing the potential of nanoparticles, researchers aim to develop targeted and efficient therapies that can address various kidney-related disorders.
Key messages: This review highlights the promising advancements in nanotechnology and their potential impact on improving the therapeutic outcomes for several kidney diseases.
期刊介绍:
This journal comprises both clinical and basic studies at the interface of nephrology, hypertension and cardiovascular research. The topics to be covered include the structural organization and biochemistry of the normal and diseased kidney, the molecular biology of transporters, the physiology and pathophysiology of glomerular filtration and tubular transport, endothelial and vascular smooth muscle cell function and blood pressure control, as well as water, electrolyte and mineral metabolism. Also discussed are the (patho)physiology and (patho) biochemistry of renal hormones, the molecular biology, genetics and clinical course of renal disease and hypertension, the renal elimination, action and clinical use of drugs, as well as dialysis and transplantation. Featuring peer-reviewed original papers, editorials translating basic science into patient-oriented research and disease, in depth reviews, and regular special topic sections, ''Kidney & Blood Pressure Research'' is an important source of information for researchers in nephrology and cardiovascular medicine.