年龄越大,种类越多:海龟和表生蓝藻。

IF 2.8 3区 生物学 Q1 MARINE & FRESHWATER BIOLOGY
Lucija Kanjer, Klara Filek, Maja Mucko, Mateja Zekan Lupić, Maša Frleta-Valić, Romana Gračan, Sunčica Bosak
{"title":"年龄越大,种类越多:海龟和表生蓝藻。","authors":"Lucija Kanjer, Klara Filek, Maja Mucko, Mateja Zekan Lupić, Maša Frleta-Valić, Romana Gračan, Sunčica Bosak","doi":"10.1111/jpy.13511","DOIUrl":null,"url":null,"abstract":"<p><p>Cyanobacteria are known for forming associations with various animals, including sea turtles, yet our understanding of cyanobacteria associated with sea turtles remains limited. This study aims to address this knowledge gap by investigating the diversity of cyanobacteria in biofilm samples from loggerhead sea turtle carapaces, utilizing a 16S rRNA gene amplicon sequencing approach. The predominant cyanobacterial order identified was Nodosilineales, with the genus Rhodoploca having the highest relative abundance. Our results suggest that cyanobacterial communities become more diverse as sea turtles age, as we observed a positive correlation between community diversity and the length of a sea turtle's carapace. Since larger and older turtles predominantly utilize neritic habitats, the shift to a more diverse cyanobacterial community aligned with a change in loggerhead habitat. Our research provides detailed insights into the cyanobacterial communities associated with loggerhead sea turtles, establishing a foundation for future studies delving into this fascinating ecological relationship and its potential implications for sea turtle conservation.</p>","PeriodicalId":16831,"journal":{"name":"Journal of Phycology","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Growing older, growing more diverse: Sea turtles and epibiotic cyanobacteria.\",\"authors\":\"Lucija Kanjer, Klara Filek, Maja Mucko, Mateja Zekan Lupić, Maša Frleta-Valić, Romana Gračan, Sunčica Bosak\",\"doi\":\"10.1111/jpy.13511\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cyanobacteria are known for forming associations with various animals, including sea turtles, yet our understanding of cyanobacteria associated with sea turtles remains limited. This study aims to address this knowledge gap by investigating the diversity of cyanobacteria in biofilm samples from loggerhead sea turtle carapaces, utilizing a 16S rRNA gene amplicon sequencing approach. The predominant cyanobacterial order identified was Nodosilineales, with the genus Rhodoploca having the highest relative abundance. Our results suggest that cyanobacterial communities become more diverse as sea turtles age, as we observed a positive correlation between community diversity and the length of a sea turtle's carapace. Since larger and older turtles predominantly utilize neritic habitats, the shift to a more diverse cyanobacterial community aligned with a change in loggerhead habitat. Our research provides detailed insights into the cyanobacterial communities associated with loggerhead sea turtles, establishing a foundation for future studies delving into this fascinating ecological relationship and its potential implications for sea turtle conservation.</p>\",\"PeriodicalId\":16831,\"journal\":{\"name\":\"Journal of Phycology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Phycology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1111/jpy.13511\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MARINE & FRESHWATER BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Phycology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/jpy.13511","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

众所周知,蓝藻会与包括海龟在内的各种动物形成关联,但我们对与海龟关联的蓝藻的了解仍然有限。本研究采用 16S rRNA 基因扩增子测序方法,调查了蠵海龟甲壳生物膜样本中蓝藻的多样性,旨在填补这一知识空白。发现的主要蓝藻目为 Nodosilineales,其中 Rhodoploca 属的相对丰度最高。我们的研究结果表明,随着海龟年龄的增长,蓝藻群落的多样性也会增加,因为我们观察到群落多样性与海龟甲壳的长度呈正相关。由于体型较大和年龄较大的海龟主要利用滩涂栖息地,因此蓝藻群落多样性的变化与蠵龟栖息地的变化是一致的。我们的研究提供了与蠵海龟相关的蓝藻群落的详细见解,为今后深入研究这种迷人的生态关系及其对海龟保护的潜在影响奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Growing older, growing more diverse: Sea turtles and epibiotic cyanobacteria.

Cyanobacteria are known for forming associations with various animals, including sea turtles, yet our understanding of cyanobacteria associated with sea turtles remains limited. This study aims to address this knowledge gap by investigating the diversity of cyanobacteria in biofilm samples from loggerhead sea turtle carapaces, utilizing a 16S rRNA gene amplicon sequencing approach. The predominant cyanobacterial order identified was Nodosilineales, with the genus Rhodoploca having the highest relative abundance. Our results suggest that cyanobacterial communities become more diverse as sea turtles age, as we observed a positive correlation between community diversity and the length of a sea turtle's carapace. Since larger and older turtles predominantly utilize neritic habitats, the shift to a more diverse cyanobacterial community aligned with a change in loggerhead habitat. Our research provides detailed insights into the cyanobacterial communities associated with loggerhead sea turtles, establishing a foundation for future studies delving into this fascinating ecological relationship and its potential implications for sea turtle conservation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Phycology
Journal of Phycology 生物-海洋与淡水生物学
CiteScore
6.50
自引率
3.40%
发文量
69
审稿时长
2 months
期刊介绍: The Journal of Phycology was founded in 1965 by the Phycological Society of America. All aspects of basic and applied research on algae are included to provide a common medium for the ecologist, physiologist, cell biologist, molecular biologist, morphologist, oceanographer, taxonomist, geneticist, and biochemist. The Journal also welcomes research that emphasizes algal interactions with other organisms and the roles of algae as components of natural ecosystems. All aspects of basic and applied research on algae are included to provide a common medium for the ecologist, physiologist, cell biologist, molecular biologist, morphologist, oceanographer, acquaculturist, systematist, geneticist, and biochemist. The Journal also welcomes research that emphasizes algal interactions with other organisms and the roles of algae as components of natural ecosystems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信