Lucija Kanjer, Klara Filek, Maja Mucko, Mateja Zekan Lupić, Maša Frleta-Valić, Romana Gračan, Sunčica Bosak
{"title":"年龄越大,种类越多:海龟和表生蓝藻。","authors":"Lucija Kanjer, Klara Filek, Maja Mucko, Mateja Zekan Lupić, Maša Frleta-Valić, Romana Gračan, Sunčica Bosak","doi":"10.1111/jpy.13511","DOIUrl":null,"url":null,"abstract":"<p><p>Cyanobacteria are known for forming associations with various animals, including sea turtles, yet our understanding of cyanobacteria associated with sea turtles remains limited. This study aims to address this knowledge gap by investigating the diversity of cyanobacteria in biofilm samples from loggerhead sea turtle carapaces, utilizing a 16S rRNA gene amplicon sequencing approach. The predominant cyanobacterial order identified was Nodosilineales, with the genus Rhodoploca having the highest relative abundance. Our results suggest that cyanobacterial communities become more diverse as sea turtles age, as we observed a positive correlation between community diversity and the length of a sea turtle's carapace. Since larger and older turtles predominantly utilize neritic habitats, the shift to a more diverse cyanobacterial community aligned with a change in loggerhead habitat. Our research provides detailed insights into the cyanobacterial communities associated with loggerhead sea turtles, establishing a foundation for future studies delving into this fascinating ecological relationship and its potential implications for sea turtle conservation.</p>","PeriodicalId":16831,"journal":{"name":"Journal of Phycology","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Growing older, growing more diverse: Sea turtles and epibiotic cyanobacteria.\",\"authors\":\"Lucija Kanjer, Klara Filek, Maja Mucko, Mateja Zekan Lupić, Maša Frleta-Valić, Romana Gračan, Sunčica Bosak\",\"doi\":\"10.1111/jpy.13511\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cyanobacteria are known for forming associations with various animals, including sea turtles, yet our understanding of cyanobacteria associated with sea turtles remains limited. This study aims to address this knowledge gap by investigating the diversity of cyanobacteria in biofilm samples from loggerhead sea turtle carapaces, utilizing a 16S rRNA gene amplicon sequencing approach. The predominant cyanobacterial order identified was Nodosilineales, with the genus Rhodoploca having the highest relative abundance. Our results suggest that cyanobacterial communities become more diverse as sea turtles age, as we observed a positive correlation between community diversity and the length of a sea turtle's carapace. Since larger and older turtles predominantly utilize neritic habitats, the shift to a more diverse cyanobacterial community aligned with a change in loggerhead habitat. Our research provides detailed insights into the cyanobacterial communities associated with loggerhead sea turtles, establishing a foundation for future studies delving into this fascinating ecological relationship and its potential implications for sea turtle conservation.</p>\",\"PeriodicalId\":16831,\"journal\":{\"name\":\"Journal of Phycology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Phycology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1111/jpy.13511\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MARINE & FRESHWATER BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Phycology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/jpy.13511","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
Growing older, growing more diverse: Sea turtles and epibiotic cyanobacteria.
Cyanobacteria are known for forming associations with various animals, including sea turtles, yet our understanding of cyanobacteria associated with sea turtles remains limited. This study aims to address this knowledge gap by investigating the diversity of cyanobacteria in biofilm samples from loggerhead sea turtle carapaces, utilizing a 16S rRNA gene amplicon sequencing approach. The predominant cyanobacterial order identified was Nodosilineales, with the genus Rhodoploca having the highest relative abundance. Our results suggest that cyanobacterial communities become more diverse as sea turtles age, as we observed a positive correlation between community diversity and the length of a sea turtle's carapace. Since larger and older turtles predominantly utilize neritic habitats, the shift to a more diverse cyanobacterial community aligned with a change in loggerhead habitat. Our research provides detailed insights into the cyanobacterial communities associated with loggerhead sea turtles, establishing a foundation for future studies delving into this fascinating ecological relationship and its potential implications for sea turtle conservation.
期刊介绍:
The Journal of Phycology was founded in 1965 by the Phycological Society of America. All aspects of basic and applied research on algae are included to provide a common medium for the ecologist, physiologist, cell biologist, molecular biologist, morphologist, oceanographer, taxonomist, geneticist, and biochemist. The Journal also welcomes research that emphasizes algal interactions with other organisms and the roles of algae as components of natural ecosystems.
All aspects of basic and applied research on algae are included to provide a common medium for the ecologist, physiologist, cell biologist, molecular biologist, morphologist, oceanographer, acquaculturist, systematist, geneticist, and biochemist. The Journal also welcomes research that emphasizes algal interactions with other organisms and the roles of algae as components of natural ecosystems.