Meng Niu, Shun-Yao Qin, Bai-Qian Wang, Nian-Ke Chen, Xian-Bin Li
{"title":"非绝热分子动力学揭示锑中的超快结构转变和电子-声子/声子-声子耦合。","authors":"Meng Niu, Shun-Yao Qin, Bai-Qian Wang, Nian-Ke Chen, Xian-Bin Li","doi":"10.1088/1361-648X/ad8696","DOIUrl":null,"url":null,"abstract":"<p><p>Real-time time-dependent density-functional theory molecular dynamics (rt-TDDFT-MD) reveals the nonadiabatic dynamics of the ultrafast photoinduced structural transition in a typical phase-change material antimony (Sb) with Peierls distortion (PD). As the excitation intensity increases from 3.54% to 5.00%, three distinct structural transition behaviors within 1 ps are observed: no PD flipping, nonvolatile-like PD flipping, and nonstop back-and-forward PD flipping. Analyses on electron-phonon and phonon-phonon couplings indicate that the excitation-activated coherent A<sub>1g</sub>phonon mode by electron-phonon coupling drives the structural transition within several hundred femtoseconds. Then, the energy of coherent motions are transformed into that of random thermal motions via phonon-phonon coupling, which prevents the A<sub>1g</sub>-mode-like coherent structure oscillations. The electron-phonon coupling and coherent motions will be enhanced with increasing the excitation intensity. Therefore, a moderate excitation intensity that can balance the coherent and decoherent thermal movements will result in a nonvolatile-like PD flipping. These findings illustrate important roles of nonadiabatic electron-phonon/phonon-phonon couplings in the ultrafast laser-induced structural transitions in materials with PD, offering insights for manipulating their structures and properties by light.</p>","PeriodicalId":16776,"journal":{"name":"Journal of Physics: Condensed Matter","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ultrafast structural transition and electron-phonon/phonon-phonon coupling in antimony revealed by nonadiabatic molecular dynamics.\",\"authors\":\"Meng Niu, Shun-Yao Qin, Bai-Qian Wang, Nian-Ke Chen, Xian-Bin Li\",\"doi\":\"10.1088/1361-648X/ad8696\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Real-time time-dependent density-functional theory molecular dynamics (rt-TDDFT-MD) reveals the nonadiabatic dynamics of the ultrafast photoinduced structural transition in a typical phase-change material antimony (Sb) with Peierls distortion (PD). As the excitation intensity increases from 3.54% to 5.00%, three distinct structural transition behaviors within 1 ps are observed: no PD flipping, nonvolatile-like PD flipping, and nonstop back-and-forward PD flipping. Analyses on electron-phonon and phonon-phonon couplings indicate that the excitation-activated coherent A<sub>1g</sub>phonon mode by electron-phonon coupling drives the structural transition within several hundred femtoseconds. Then, the energy of coherent motions are transformed into that of random thermal motions via phonon-phonon coupling, which prevents the A<sub>1g</sub>-mode-like coherent structure oscillations. The electron-phonon coupling and coherent motions will be enhanced with increasing the excitation intensity. Therefore, a moderate excitation intensity that can balance the coherent and decoherent thermal movements will result in a nonvolatile-like PD flipping. These findings illustrate important roles of nonadiabatic electron-phonon/phonon-phonon couplings in the ultrafast laser-induced structural transitions in materials with PD, offering insights for manipulating their structures and properties by light.</p>\",\"PeriodicalId\":16776,\"journal\":{\"name\":\"Journal of Physics: Condensed Matter\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics: Condensed Matter\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-648X/ad8696\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics: Condensed Matter","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-648X/ad8696","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
Ultrafast structural transition and electron-phonon/phonon-phonon coupling in antimony revealed by nonadiabatic molecular dynamics.
Real-time time-dependent density-functional theory molecular dynamics (rt-TDDFT-MD) reveals the nonadiabatic dynamics of the ultrafast photoinduced structural transition in a typical phase-change material antimony (Sb) with Peierls distortion (PD). As the excitation intensity increases from 3.54% to 5.00%, three distinct structural transition behaviors within 1 ps are observed: no PD flipping, nonvolatile-like PD flipping, and nonstop back-and-forward PD flipping. Analyses on electron-phonon and phonon-phonon couplings indicate that the excitation-activated coherent A1gphonon mode by electron-phonon coupling drives the structural transition within several hundred femtoseconds. Then, the energy of coherent motions are transformed into that of random thermal motions via phonon-phonon coupling, which prevents the A1g-mode-like coherent structure oscillations. The electron-phonon coupling and coherent motions will be enhanced with increasing the excitation intensity. Therefore, a moderate excitation intensity that can balance the coherent and decoherent thermal movements will result in a nonvolatile-like PD flipping. These findings illustrate important roles of nonadiabatic electron-phonon/phonon-phonon couplings in the ultrafast laser-induced structural transitions in materials with PD, offering insights for manipulating their structures and properties by light.
期刊介绍:
Journal of Physics: Condensed Matter covers the whole of condensed matter physics including soft condensed matter and nanostructures. Papers may report experimental, theoretical and simulation studies. Note that papers must contain fundamental condensed matter science: papers reporting methods of materials preparation or properties of materials without novel condensed matter content will not be accepted.