{"title":"特殊点法计算 II 型包晶量子点二维自组装的光学吸收系数。","authors":"C I Cabrera, R Pérez-Álvarez","doi":"10.1088/1361-648X/ad8716","DOIUrl":null,"url":null,"abstract":"<p><p>All-inorganic perovskite quantum dots with the usual cubic shape have emerged as a successful and low-cost alternative to electronically functional nanomaterials motivating various fields of applications, including high-efficiency photovoltaics. Here, we present an efficient and almost analytic approach for optical absorption coefficient calculation on self-assembled perovskite quantum dot films with type-II band alignment. The approach takes advantage of the special point technique for integration over the two-dimensional Brillouin zone, which minimizes the computational cost. The set of special wave-vector points is generated using the Monkhorst and Pack method. The optical absorption spectrum for phenyl-C60-butyric acid methyl ester (PCBM)/CsPbI<sub>3</sub>quantum dot films is computed, in good agreement with the experiment assuming a homogeneous linewidth of 50 meV and considering a ten special-point set. We show that light absorption in these systems is a cooperative optoelectronic property resulting from the quantum-mechanical coupling between perovskite nanocubes, leading to extended system states. The generality of this approach makes it suitable for calculating the optical absorption coefficient in a broad class of perovskite quantum dot systems.</p>","PeriodicalId":16776,"journal":{"name":"Journal of Physics: Condensed Matter","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Special-point approach for optical absorption coefficient calculations on two-dimensional self-assemblies of type-II perovskite quantum dots.\",\"authors\":\"C I Cabrera, R Pérez-Álvarez\",\"doi\":\"10.1088/1361-648X/ad8716\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>All-inorganic perovskite quantum dots with the usual cubic shape have emerged as a successful and low-cost alternative to electronically functional nanomaterials motivating various fields of applications, including high-efficiency photovoltaics. Here, we present an efficient and almost analytic approach for optical absorption coefficient calculation on self-assembled perovskite quantum dot films with type-II band alignment. The approach takes advantage of the special point technique for integration over the two-dimensional Brillouin zone, which minimizes the computational cost. The set of special wave-vector points is generated using the Monkhorst and Pack method. The optical absorption spectrum for phenyl-C60-butyric acid methyl ester (PCBM)/CsPbI<sub>3</sub>quantum dot films is computed, in good agreement with the experiment assuming a homogeneous linewidth of 50 meV and considering a ten special-point set. We show that light absorption in these systems is a cooperative optoelectronic property resulting from the quantum-mechanical coupling between perovskite nanocubes, leading to extended system states. The generality of this approach makes it suitable for calculating the optical absorption coefficient in a broad class of perovskite quantum dot systems.</p>\",\"PeriodicalId\":16776,\"journal\":{\"name\":\"Journal of Physics: Condensed Matter\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics: Condensed Matter\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-648X/ad8716\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics: Condensed Matter","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-648X/ad8716","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0
摘要
具有常见立方体形状的全无机包晶量子点已成为电子功能纳米材料的一种成功且低成本的替代材料,其应用领域包括高效光伏。在此,我们提出了一种高效且近乎解析的方法,用于计算具有 II 型带排列的自组装包晶量子点薄膜的光学吸收系数。该方法利用特殊点技术对二维布里渊区进行积分,从而最大限度地降低了计算成本。特殊波矢量点集合是利用 Monkhorst 和 Pack 方法生成的。我们计算了苯基-C60-丁酸甲酯(PCBM)/CsPbI3 量子点薄膜的光吸收光谱,假设均质线宽为 50 meV,并考虑了十个特殊点集,结果与实验结果非常吻合。我们的研究表明,这些系统中的光吸收是一种合作光电特性,源于包晶纳米立方体之间的量子力学耦合,从而导致扩展的系统状态。这种方法的通用性使其适用于计算一大类包晶石量子点系统的光吸收系数。
Special-point approach for optical absorption coefficient calculations on two-dimensional self-assemblies of type-II perovskite quantum dots.
All-inorganic perovskite quantum dots with the usual cubic shape have emerged as a successful and low-cost alternative to electronically functional nanomaterials motivating various fields of applications, including high-efficiency photovoltaics. Here, we present an efficient and almost analytic approach for optical absorption coefficient calculation on self-assembled perovskite quantum dot films with type-II band alignment. The approach takes advantage of the special point technique for integration over the two-dimensional Brillouin zone, which minimizes the computational cost. The set of special wave-vector points is generated using the Monkhorst and Pack method. The optical absorption spectrum for phenyl-C60-butyric acid methyl ester (PCBM)/CsPbI3quantum dot films is computed, in good agreement with the experiment assuming a homogeneous linewidth of 50 meV and considering a ten special-point set. We show that light absorption in these systems is a cooperative optoelectronic property resulting from the quantum-mechanical coupling between perovskite nanocubes, leading to extended system states. The generality of this approach makes it suitable for calculating the optical absorption coefficient in a broad class of perovskite quantum dot systems.
期刊介绍:
Journal of Physics: Condensed Matter covers the whole of condensed matter physics including soft condensed matter and nanostructures. Papers may report experimental, theoretical and simulation studies. Note that papers must contain fundamental condensed matter science: papers reporting methods of materials preparation or properties of materials without novel condensed matter content will not be accepted.