Robin J Bearss, Isabella A Oliver, Peighton N Neuman, Wahab I Abdulmajeed, Jennifer M Ackerman, Richard Piet
{"title":"激活离子型和 I 组代谢型谷氨酸受体可刺激小鼠吻肽神经元的活动。","authors":"Robin J Bearss, Isabella A Oliver, Peighton N Neuman, Wahab I Abdulmajeed, Jennifer M Ackerman, Richard Piet","doi":"10.1111/jne.13456","DOIUrl":null,"url":null,"abstract":"<p><p>Different populations of hypothalamic kisspeptin (KISS1) neurons located in the rostral periventricular area of the third ventricle (RP3V) and arcuate nucleus (ARC) are thought to generate the sex-specific patterns of gonadotropin secretion. These neuronal populations integrate gonadal sex steroid feedback with internal and external cues relayed via the actions of neurotransmitters and neuropeptides. The excitatory amino acid neurotransmitter glutamate, the main excitatory neurotransmitter in the brain, plays a role in regulating gonadotropin secretion, at least partially through engaging KISS1 signaling. The expression and function of individual glutamate receptor subtypes in KISS1 neurons, however, are not well characterized. Here, we used GCaMP-based calcium imaging and patch-clamp electrophysiology to assess the impact of activating individual ionotropic (iGluR) and group I metabotropic (mGluR) glutamate receptors on KISS1 neuron activity in the mouse RP3V and ARC. Our results indicate that activation of all iGluR subtypes and of group I mGluRs, likely mGluR1, consistently drives activity in the majority of KISS1 neurons within the RP3V and ARC of males and females. Our results also revealed, somewhat unexpectedly, sex- and region-specific differences. Indeed, activating (S)-α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) type iGluRs evoked larger responses in female ARC<sup>KISS1</sup> neurons than in their male counterparts whereas activating group I mGluRs induced larger responses in RP3V<sup>KISS1</sup> neurons than in ARC<sup>KISS1</sup> neurons in females. Together, our findings suggest that glutamatergic neurotransmission in KISS1 neurons, and its impact on the activity of these cells, might be sex- and region-dependent in mice.</p>","PeriodicalId":16535,"journal":{"name":"Journal of Neuroendocrinology","volume":" ","pages":"e13456"},"PeriodicalIF":3.3000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Activation of ionotropic and group I metabotropic glutamate receptors stimulates kisspeptin neuron activity in mice.\",\"authors\":\"Robin J Bearss, Isabella A Oliver, Peighton N Neuman, Wahab I Abdulmajeed, Jennifer M Ackerman, Richard Piet\",\"doi\":\"10.1111/jne.13456\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Different populations of hypothalamic kisspeptin (KISS1) neurons located in the rostral periventricular area of the third ventricle (RP3V) and arcuate nucleus (ARC) are thought to generate the sex-specific patterns of gonadotropin secretion. These neuronal populations integrate gonadal sex steroid feedback with internal and external cues relayed via the actions of neurotransmitters and neuropeptides. The excitatory amino acid neurotransmitter glutamate, the main excitatory neurotransmitter in the brain, plays a role in regulating gonadotropin secretion, at least partially through engaging KISS1 signaling. The expression and function of individual glutamate receptor subtypes in KISS1 neurons, however, are not well characterized. Here, we used GCaMP-based calcium imaging and patch-clamp electrophysiology to assess the impact of activating individual ionotropic (iGluR) and group I metabotropic (mGluR) glutamate receptors on KISS1 neuron activity in the mouse RP3V and ARC. Our results indicate that activation of all iGluR subtypes and of group I mGluRs, likely mGluR1, consistently drives activity in the majority of KISS1 neurons within the RP3V and ARC of males and females. Our results also revealed, somewhat unexpectedly, sex- and region-specific differences. Indeed, activating (S)-α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) type iGluRs evoked larger responses in female ARC<sup>KISS1</sup> neurons than in their male counterparts whereas activating group I mGluRs induced larger responses in RP3V<sup>KISS1</sup> neurons than in ARC<sup>KISS1</sup> neurons in females. Together, our findings suggest that glutamatergic neurotransmission in KISS1 neurons, and its impact on the activity of these cells, might be sex- and region-dependent in mice.</p>\",\"PeriodicalId\":16535,\"journal\":{\"name\":\"Journal of Neuroendocrinology\",\"volume\":\" \",\"pages\":\"e13456\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Neuroendocrinology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1111/jne.13456\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neuroendocrinology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/jne.13456","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
Activation of ionotropic and group I metabotropic glutamate receptors stimulates kisspeptin neuron activity in mice.
Different populations of hypothalamic kisspeptin (KISS1) neurons located in the rostral periventricular area of the third ventricle (RP3V) and arcuate nucleus (ARC) are thought to generate the sex-specific patterns of gonadotropin secretion. These neuronal populations integrate gonadal sex steroid feedback with internal and external cues relayed via the actions of neurotransmitters and neuropeptides. The excitatory amino acid neurotransmitter glutamate, the main excitatory neurotransmitter in the brain, plays a role in regulating gonadotropin secretion, at least partially through engaging KISS1 signaling. The expression and function of individual glutamate receptor subtypes in KISS1 neurons, however, are not well characterized. Here, we used GCaMP-based calcium imaging and patch-clamp electrophysiology to assess the impact of activating individual ionotropic (iGluR) and group I metabotropic (mGluR) glutamate receptors on KISS1 neuron activity in the mouse RP3V and ARC. Our results indicate that activation of all iGluR subtypes and of group I mGluRs, likely mGluR1, consistently drives activity in the majority of KISS1 neurons within the RP3V and ARC of males and females. Our results also revealed, somewhat unexpectedly, sex- and region-specific differences. Indeed, activating (S)-α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) type iGluRs evoked larger responses in female ARCKISS1 neurons than in their male counterparts whereas activating group I mGluRs induced larger responses in RP3VKISS1 neurons than in ARCKISS1 neurons in females. Together, our findings suggest that glutamatergic neurotransmission in KISS1 neurons, and its impact on the activity of these cells, might be sex- and region-dependent in mice.
期刊介绍:
Journal of Neuroendocrinology provides the principal international focus for the newest ideas in classical neuroendocrinology and its expanding interface with the regulation of behavioural, cognitive, developmental, degenerative and metabolic processes. Through the rapid publication of original manuscripts and provocative review articles, it provides essential reading for basic scientists and clinicians researching in this rapidly expanding field.
In determining content, the primary considerations are excellence, relevance and novelty. While Journal of Neuroendocrinology reflects the broad scientific and clinical interests of the BSN membership, the editorial team, led by Professor Julian Mercer, ensures that the journal’s ethos, authorship, content and purpose are those expected of a leading international publication.