五种乳酸菌质粒固化效率的比较

IF 2.5 4区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Journal of microbiology and biotechnology Pub Date : 2024-11-28 Epub Date: 2024-09-11 DOI:10.4014/jmb.2406.06003
Chan-Hyeok Park, Haneol Yang, Seunghyun Kim, Chan-Seok Yun, Byung-Chun Jang, Yeong-Jin Hong, Doo-Sang Park
{"title":"五种乳酸菌质粒固化效率的比较","authors":"Chan-Hyeok Park, Haneol Yang, Seunghyun Kim, Chan-Seok Yun, Byung-Chun Jang, Yeong-Jin Hong, Doo-Sang Park","doi":"10.4014/jmb.2406.06003","DOIUrl":null,"url":null,"abstract":"<p><p>With the recent stringent criteria for antibiotic susceptibility in probiotics, the presence of antibiotic resistance genes and plasmids associated with their transfer has become a limiting factor in the approval of probiotics. The need to remove genes related to antibiotic resistance and virulence through plasmid curing for the authorization of probiotics is increasing. In this study, we investigated the curing efficiency of ethidium bromide, acridine orange, and novobiocin at different concentrations and durations in five strains of plasmid-bearing lactic acid bacteria and examined the curing characteristics in each strain. <i>Limosibacillus reuteri</i> and <i>Lacticaseibacillus paracasei</i> exhibited curing efficiencies ranging from 5% to 44% following treatment with ethidium bromide (10-50 μg/ml) for 24-72 h, while <i>Lactobacillus gasseri</i> showed the highest efficiency at 14% following treatment with 10 μg/ml novobiocin for 24 h. <i>Lactiplantibacillus plantarum</i>, which harbors two or more plasmids, demonstrated curing efficiencies ranging from 1% to 8% after an additional 72-h treatment of partially cured strains with 10 μg/ml novobiocin. Plasmid curing in strains with larger plasmids exhibited lower efficiencies and required longer durations. In strains harboring two or more plasmids, a relatively low curing efficiency with a single treatment and a high frequency of false positives, wherein recovery occurred after curing, were observed. Although certain strains exhibited altered susceptibilities to specific antibiotics after curing, these outcomes could not be attributed to the loss of antibiotic resistance genes. Furthermore, the genomic data from the cured strains revealed minimal changes throughout the genome that did not lead to gene mutations.</p>","PeriodicalId":16481,"journal":{"name":"Journal of microbiology and biotechnology","volume":"34 11","pages":"2385-2395"},"PeriodicalIF":2.5000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11637826/pdf/","citationCount":"0","resultStr":"{\"title\":\"Comparison of Plasmid Curing Efficiency across Five Lactic Acid Bacterial Species.\",\"authors\":\"Chan-Hyeok Park, Haneol Yang, Seunghyun Kim, Chan-Seok Yun, Byung-Chun Jang, Yeong-Jin Hong, Doo-Sang Park\",\"doi\":\"10.4014/jmb.2406.06003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>With the recent stringent criteria for antibiotic susceptibility in probiotics, the presence of antibiotic resistance genes and plasmids associated with their transfer has become a limiting factor in the approval of probiotics. The need to remove genes related to antibiotic resistance and virulence through plasmid curing for the authorization of probiotics is increasing. In this study, we investigated the curing efficiency of ethidium bromide, acridine orange, and novobiocin at different concentrations and durations in five strains of plasmid-bearing lactic acid bacteria and examined the curing characteristics in each strain. <i>Limosibacillus reuteri</i> and <i>Lacticaseibacillus paracasei</i> exhibited curing efficiencies ranging from 5% to 44% following treatment with ethidium bromide (10-50 μg/ml) for 24-72 h, while <i>Lactobacillus gasseri</i> showed the highest efficiency at 14% following treatment with 10 μg/ml novobiocin for 24 h. <i>Lactiplantibacillus plantarum</i>, which harbors two or more plasmids, demonstrated curing efficiencies ranging from 1% to 8% after an additional 72-h treatment of partially cured strains with 10 μg/ml novobiocin. Plasmid curing in strains with larger plasmids exhibited lower efficiencies and required longer durations. In strains harboring two or more plasmids, a relatively low curing efficiency with a single treatment and a high frequency of false positives, wherein recovery occurred after curing, were observed. Although certain strains exhibited altered susceptibilities to specific antibiotics after curing, these outcomes could not be attributed to the loss of antibiotic resistance genes. Furthermore, the genomic data from the cured strains revealed minimal changes throughout the genome that did not lead to gene mutations.</p>\",\"PeriodicalId\":16481,\"journal\":{\"name\":\"Journal of microbiology and biotechnology\",\"volume\":\"34 11\",\"pages\":\"2385-2395\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11637826/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of microbiology and biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.4014/jmb.2406.06003\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/11 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of microbiology and biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.4014/jmb.2406.06003","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/11 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

随着最近对益生菌抗生素敏感性标准的严格规定,抗生素耐药基因及其相关质粒的存在已成为益生菌审批的一个限制因素。通过质粒固化去除与抗生素耐药性和毒力相关的基因以获得益生菌授权的需求日益增加。在本研究中,我们研究了溴化乙锭、吖啶橙和新生物素在不同浓度和持续时间下对五株带有质粒的乳酸菌的固化效率,并考察了各菌株的固化特性。用溴化乙锭(10-50 μg/ml)处理 24-72 小时后,Limosibacillus reuteri 和 Lacticaseibacillus paracasei 的固化效率为 5%-44%,而用 10 μg/ml novobiocin 处理 24 小时后,Lactobacillus gasseri 的固化效率最高,为 14%。携带两个或多个质粒的植物乳杆菌(Lactiplantibacillus plantarum)在用 10 μg/ml 新诺生物素对部分固化的菌株再处理 72 小时后,固化效率为 1%至 8%。质粒较大的菌株的质粒固化效率较低,所需的时间也较长。在携带两个或更多质粒的菌株中,观察到单次处理的固化效率相对较低,且假阳性频率较高,即固化后出现恢复。虽然某些菌株在固化后对特定抗生素的敏感性有所改变,但这些结果不能归因于抗生素抗性基因的丢失。此外,固化菌株的基因组数据显示,整个基因组的变化极小,不会导致基因突变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparison of Plasmid Curing Efficiency across Five Lactic Acid Bacterial Species.

With the recent stringent criteria for antibiotic susceptibility in probiotics, the presence of antibiotic resistance genes and plasmids associated with their transfer has become a limiting factor in the approval of probiotics. The need to remove genes related to antibiotic resistance and virulence through plasmid curing for the authorization of probiotics is increasing. In this study, we investigated the curing efficiency of ethidium bromide, acridine orange, and novobiocin at different concentrations and durations in five strains of plasmid-bearing lactic acid bacteria and examined the curing characteristics in each strain. Limosibacillus reuteri and Lacticaseibacillus paracasei exhibited curing efficiencies ranging from 5% to 44% following treatment with ethidium bromide (10-50 μg/ml) for 24-72 h, while Lactobacillus gasseri showed the highest efficiency at 14% following treatment with 10 μg/ml novobiocin for 24 h. Lactiplantibacillus plantarum, which harbors two or more plasmids, demonstrated curing efficiencies ranging from 1% to 8% after an additional 72-h treatment of partially cured strains with 10 μg/ml novobiocin. Plasmid curing in strains with larger plasmids exhibited lower efficiencies and required longer durations. In strains harboring two or more plasmids, a relatively low curing efficiency with a single treatment and a high frequency of false positives, wherein recovery occurred after curing, were observed. Although certain strains exhibited altered susceptibilities to specific antibiotics after curing, these outcomes could not be attributed to the loss of antibiotic resistance genes. Furthermore, the genomic data from the cured strains revealed minimal changes throughout the genome that did not lead to gene mutations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of microbiology and biotechnology
Journal of microbiology and biotechnology BIOTECHNOLOGY & APPLIED MICROBIOLOGY-MICROBIOLOGY
CiteScore
5.50
自引率
3.60%
发文量
151
审稿时长
2 months
期刊介绍: The Journal of Microbiology and Biotechnology (JMB) is a monthly international journal devoted to the advancement and dissemination of scientific knowledge pertaining to microbiology, biotechnology, and related academic disciplines. It covers various scientific and technological aspects of Molecular and Cellular Microbiology, Environmental Microbiology and Biotechnology, Food Biotechnology, and Biotechnology and Bioengineering (subcategories are listed below). Launched in March 1991, the JMB is published by the Korean Society for Microbiology and Biotechnology (KMB) and distributed worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信