多发性硬化症患者脑部磁共振成像顺磁边缘病变自动检测的多中心验证。

IF 2.3 4区 医学 Q3 CLINICAL NEUROLOGY
Luyun Chen, Zheng Ren, Kelly A. Clark, Carolyn Lou, Fang Liu, Quy Cao, Abigail R. Manning, Melissa L. Martin, Elaina Luskin, Carly M. O'Donnell, Christina J. Azevedo, Peter A. Calabresi, Leorah Freeman, Roland G. Henry, Erin E. Longbrake, Jiwon Oh, Nico Papinutto, Michel Bilello, Jae W. Song, Marwa Kaisey, Nancy L. Sicotte, Daniel S. Reich, Andrew J. Solomon, Daniel Ontaneda, Pascal Sati, Martina Absinta, Matthew K. Schindler, Russell T. Shinohara, the NAIMS Cooperative
{"title":"多发性硬化症患者脑部磁共振成像顺磁边缘病变自动检测的多中心验证。","authors":"Luyun Chen,&nbsp;Zheng Ren,&nbsp;Kelly A. Clark,&nbsp;Carolyn Lou,&nbsp;Fang Liu,&nbsp;Quy Cao,&nbsp;Abigail R. Manning,&nbsp;Melissa L. Martin,&nbsp;Elaina Luskin,&nbsp;Carly M. O'Donnell,&nbsp;Christina J. Azevedo,&nbsp;Peter A. Calabresi,&nbsp;Leorah Freeman,&nbsp;Roland G. Henry,&nbsp;Erin E. Longbrake,&nbsp;Jiwon Oh,&nbsp;Nico Papinutto,&nbsp;Michel Bilello,&nbsp;Jae W. Song,&nbsp;Marwa Kaisey,&nbsp;Nancy L. Sicotte,&nbsp;Daniel S. Reich,&nbsp;Andrew J. Solomon,&nbsp;Daniel Ontaneda,&nbsp;Pascal Sati,&nbsp;Martina Absinta,&nbsp;Matthew K. Schindler,&nbsp;Russell T. Shinohara,&nbsp;the NAIMS Cooperative","doi":"10.1111/jon.13242","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Background and Purpose</h3>\n \n <p>Paramagnetic rim lesions (PRLs) are an MRI biomarker of chronic inflammation in people with multiple sclerosis (MS). PRLs may aid in the diagnosis and prognosis of MS. However, manual identification of PRLs is time-consuming and prone to poor interrater reliability. To address these challenges, the Automated Paramagnetic Rim Lesion (APRL) algorithm was developed to automate PRL detection. The primary objective of this study is to evaluate the accuracy of APRL for detecting PRLs in a multicenter setting.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>We applied APRL to a multicenter dataset, which included 3-Tesla MRI acquired in 92 participants (43 with MS, 14 with clinically isolated syndrome [CIS]/radiologically isolated syndrome [RIS], 35 without RIS/CIS/MS). Subsequently, we assessed APRL's performance by comparing its results with manual PRL assessments carried out by a team of trained raters.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>Among the 92 participants, expert raters identified 5637 white matter lesions and 148 PRLs. The automated segmentation method successfully captured 115 (78%) of the manually identified PRLs. Within these 115 identified lesions, APRL differentiated between manually identified PRLs and non-PRLs with an area under the curve (AUC) of .73 (95% confidence interval [CI]: [.68, .78]). At the subject level, the count of APRL-identified PRLs predicted MS diagnosis with an AUC of .69 (95% CI: [.57, .81]).</p>\n </section>\n \n <section>\n \n <h3> Conclusion</h3>\n \n <p>Our study demonstrated APRL's capability to differentiate between PRLs and lesions without paramagnetic rims in a multicenter study. Automated identification of PRLs offers greater efficiency over manual identification and could facilitate large-scale assessments of PRLs in clinical trials.</p>\n </section>\n </div>","PeriodicalId":16399,"journal":{"name":"Journal of Neuroimaging","volume":"34 6","pages":"750-757"},"PeriodicalIF":2.3000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multicenter validation of automated detection of paramagnetic rim lesions on brain MRI in multiple sclerosis\",\"authors\":\"Luyun Chen,&nbsp;Zheng Ren,&nbsp;Kelly A. Clark,&nbsp;Carolyn Lou,&nbsp;Fang Liu,&nbsp;Quy Cao,&nbsp;Abigail R. Manning,&nbsp;Melissa L. Martin,&nbsp;Elaina Luskin,&nbsp;Carly M. O'Donnell,&nbsp;Christina J. Azevedo,&nbsp;Peter A. Calabresi,&nbsp;Leorah Freeman,&nbsp;Roland G. Henry,&nbsp;Erin E. Longbrake,&nbsp;Jiwon Oh,&nbsp;Nico Papinutto,&nbsp;Michel Bilello,&nbsp;Jae W. Song,&nbsp;Marwa Kaisey,&nbsp;Nancy L. Sicotte,&nbsp;Daniel S. Reich,&nbsp;Andrew J. Solomon,&nbsp;Daniel Ontaneda,&nbsp;Pascal Sati,&nbsp;Martina Absinta,&nbsp;Matthew K. Schindler,&nbsp;Russell T. Shinohara,&nbsp;the NAIMS Cooperative\",\"doi\":\"10.1111/jon.13242\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n \\n <h3> Background and Purpose</h3>\\n \\n <p>Paramagnetic rim lesions (PRLs) are an MRI biomarker of chronic inflammation in people with multiple sclerosis (MS). PRLs may aid in the diagnosis and prognosis of MS. However, manual identification of PRLs is time-consuming and prone to poor interrater reliability. To address these challenges, the Automated Paramagnetic Rim Lesion (APRL) algorithm was developed to automate PRL detection. The primary objective of this study is to evaluate the accuracy of APRL for detecting PRLs in a multicenter setting.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Methods</h3>\\n \\n <p>We applied APRL to a multicenter dataset, which included 3-Tesla MRI acquired in 92 participants (43 with MS, 14 with clinically isolated syndrome [CIS]/radiologically isolated syndrome [RIS], 35 without RIS/CIS/MS). Subsequently, we assessed APRL's performance by comparing its results with manual PRL assessments carried out by a team of trained raters.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Results</h3>\\n \\n <p>Among the 92 participants, expert raters identified 5637 white matter lesions and 148 PRLs. The automated segmentation method successfully captured 115 (78%) of the manually identified PRLs. Within these 115 identified lesions, APRL differentiated between manually identified PRLs and non-PRLs with an area under the curve (AUC) of .73 (95% confidence interval [CI]: [.68, .78]). At the subject level, the count of APRL-identified PRLs predicted MS diagnosis with an AUC of .69 (95% CI: [.57, .81]).</p>\\n </section>\\n \\n <section>\\n \\n <h3> Conclusion</h3>\\n \\n <p>Our study demonstrated APRL's capability to differentiate between PRLs and lesions without paramagnetic rims in a multicenter study. Automated identification of PRLs offers greater efficiency over manual identification and could facilitate large-scale assessments of PRLs in clinical trials.</p>\\n </section>\\n </div>\",\"PeriodicalId\":16399,\"journal\":{\"name\":\"Journal of Neuroimaging\",\"volume\":\"34 6\",\"pages\":\"750-757\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Neuroimaging\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/jon.13242\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neuroimaging","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jon.13242","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景和目的:顺磁性边缘病变(PRLs)是多发性硬化症(MS)患者慢性炎症的 MRI 生物标志物。PRLs有助于多发性硬化症的诊断和预后。然而,人工鉴定 PRLs 既费时,又容易出现相互间可靠性差的问题。为了应对这些挑战,我们开发了自动顺磁边缘病变(APRL)算法来自动检测 PRL。本研究的主要目的是评估 APRL 在多中心环境中检测 PRL 的准确性:我们将 APRL 应用于一个多中心数据集,该数据集包括 92 名参与者(43 名 MS 患者、14 名临床孤立综合征 [CIS] / 放射学孤立综合征 [RIS]、35 名无 RIS/CIS/MS 患者)获得的 3-Tesla MRI。随后,我们将 APRL 的结果与一组训练有素的评定者进行的人工 PRL 评估结果进行比较,以评估 APRL 的性能:结果:在 92 名参与者中,专家评分员识别出了 5637 个白质病变和 148 个 PRL。自动分割方法成功捕获了 115 个(78%)人工识别的 PRL。在这 115 个已识别的病变中,APRL 可以区分人工识别的 PRL 和非 PRL,其曲线下面积 (AUC) 为 0.73(95% 置信区间 [CI]:[.68, .78])。在受试者层面,APRL识别的PRL计数可预测多发性硬化症的诊断,AUC为.69(95% 置信区间:[.57, .81]):我们的研究在一项多中心研究中证明了APRL区分PRL和无顺磁性边缘病变的能力。PRL的自动识别比人工识别效率更高,有助于在临床试验中对PRL进行大规模评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multicenter validation of automated detection of paramagnetic rim lesions on brain MRI in multiple sclerosis

Background and Purpose

Paramagnetic rim lesions (PRLs) are an MRI biomarker of chronic inflammation in people with multiple sclerosis (MS). PRLs may aid in the diagnosis and prognosis of MS. However, manual identification of PRLs is time-consuming and prone to poor interrater reliability. To address these challenges, the Automated Paramagnetic Rim Lesion (APRL) algorithm was developed to automate PRL detection. The primary objective of this study is to evaluate the accuracy of APRL for detecting PRLs in a multicenter setting.

Methods

We applied APRL to a multicenter dataset, which included 3-Tesla MRI acquired in 92 participants (43 with MS, 14 with clinically isolated syndrome [CIS]/radiologically isolated syndrome [RIS], 35 without RIS/CIS/MS). Subsequently, we assessed APRL's performance by comparing its results with manual PRL assessments carried out by a team of trained raters.

Results

Among the 92 participants, expert raters identified 5637 white matter lesions and 148 PRLs. The automated segmentation method successfully captured 115 (78%) of the manually identified PRLs. Within these 115 identified lesions, APRL differentiated between manually identified PRLs and non-PRLs with an area under the curve (AUC) of .73 (95% confidence interval [CI]: [.68, .78]). At the subject level, the count of APRL-identified PRLs predicted MS diagnosis with an AUC of .69 (95% CI: [.57, .81]).

Conclusion

Our study demonstrated APRL's capability to differentiate between PRLs and lesions without paramagnetic rims in a multicenter study. Automated identification of PRLs offers greater efficiency over manual identification and could facilitate large-scale assessments of PRLs in clinical trials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Neuroimaging
Journal of Neuroimaging 医学-核医学
CiteScore
4.70
自引率
0.00%
发文量
117
审稿时长
6-12 weeks
期刊介绍: Start reading the Journal of Neuroimaging to learn the latest neurological imaging techniques. The peer-reviewed research is written in a practical clinical context, giving you the information you need on: MRI CT Carotid Ultrasound and TCD SPECT PET Endovascular Surgical Neuroradiology Functional MRI Xenon CT and other new and upcoming neuroscientific modalities.The Journal of Neuroimaging addresses the full spectrum of human nervous system disease, including stroke, neoplasia, degenerating and demyelinating disease, epilepsy, tumors, lesions, infectious disease, cerebral vascular arterial diseases, toxic-metabolic disease, psychoses, dementias, heredo-familial disease, and trauma.Offering original research, review articles, case reports, neuroimaging CPCs, and evaluations of instruments and technology relevant to the nervous system, the Journal of Neuroimaging focuses on useful clinical developments and applications, tested techniques and interpretations, patient care, diagnostics, and therapeutics. Start reading today!
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信