{"title":"从头部 CT 扫描进行深度学习,预测颅内压升高。","authors":"Ryota Sato, Yukinori Akiyama, Takeshi Mikami, Ayumu Yamaoka, Chie Kamada, Kyoya Sakashita, Yasuhiro Takahashi, Yusuke Kimura, Katsuya Komatsu, Nobuhiro Mikuni","doi":"10.1111/jon.13241","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Background and Purpose</h3>\n \n <p>Elevated intracranial pressure (ICP) resulting from severe head injury or stroke poses a risk of secondary brain injury that requires neurosurgical intervention. However, currently available noninvasive monitoring techniques for predicting ICP are not sufficiently advanced. We aimed to develop a minimally invasive ICP prediction model using simple CT images to prevent secondary brain injury caused by elevated ICP.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>We used the following three methods to determine the presence or absence of elevated ICP using midbrain-level CT images: (1) a deep learning model created using the Python (PY) programming language; (2) a model based on cistern narrowing and scaling of brainstem deformities and presence of hydrocephalus, analyzed using the statistical tool Prediction One (PO); and (3) identification of ICP by senior residents (SRs). We compared the accuracy of the validation and test data using fivefold cross-validation and visualized or quantified the areas of interest in the models.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>The accuracy of the validation data for the PY, PO, and SR methods was 83.68% (83.42%-85.13%), 85.71% (73.81%-88.10%), and 66.67% (55.96%-72.62%), respectively. Significant differences in accuracy were observed between the PY and SR methods. Test data accuracy was 77.27% (70.45%-77.2%), 84.09% (75.00%-85.23%), and 61.36% (56.82%-68.18%), respectively.</p>\n </section>\n \n <section>\n \n <h3> Conclusions</h3>\n \n <p>Overall, the outcomes suggest that these newly developed models may be valuable tools for the rapid and accurate detection of elevated ICP in clinical practice. These models can easily be applied to other sites, as a single CT image at the midbrain level can provide a highly accurate diagnosis.</p>\n </section>\n </div>","PeriodicalId":16399,"journal":{"name":"Journal of Neuroimaging","volume":"34 6","pages":"742-749"},"PeriodicalIF":2.3000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep learning from head CT scans to predict elevated intracranial pressure\",\"authors\":\"Ryota Sato, Yukinori Akiyama, Takeshi Mikami, Ayumu Yamaoka, Chie Kamada, Kyoya Sakashita, Yasuhiro Takahashi, Yusuke Kimura, Katsuya Komatsu, Nobuhiro Mikuni\",\"doi\":\"10.1111/jon.13241\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n \\n <h3> Background and Purpose</h3>\\n \\n <p>Elevated intracranial pressure (ICP) resulting from severe head injury or stroke poses a risk of secondary brain injury that requires neurosurgical intervention. However, currently available noninvasive monitoring techniques for predicting ICP are not sufficiently advanced. We aimed to develop a minimally invasive ICP prediction model using simple CT images to prevent secondary brain injury caused by elevated ICP.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Methods</h3>\\n \\n <p>We used the following three methods to determine the presence or absence of elevated ICP using midbrain-level CT images: (1) a deep learning model created using the Python (PY) programming language; (2) a model based on cistern narrowing and scaling of brainstem deformities and presence of hydrocephalus, analyzed using the statistical tool Prediction One (PO); and (3) identification of ICP by senior residents (SRs). We compared the accuracy of the validation and test data using fivefold cross-validation and visualized or quantified the areas of interest in the models.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Results</h3>\\n \\n <p>The accuracy of the validation data for the PY, PO, and SR methods was 83.68% (83.42%-85.13%), 85.71% (73.81%-88.10%), and 66.67% (55.96%-72.62%), respectively. Significant differences in accuracy were observed between the PY and SR methods. Test data accuracy was 77.27% (70.45%-77.2%), 84.09% (75.00%-85.23%), and 61.36% (56.82%-68.18%), respectively.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Conclusions</h3>\\n \\n <p>Overall, the outcomes suggest that these newly developed models may be valuable tools for the rapid and accurate detection of elevated ICP in clinical practice. These models can easily be applied to other sites, as a single CT image at the midbrain level can provide a highly accurate diagnosis.</p>\\n </section>\\n </div>\",\"PeriodicalId\":16399,\"journal\":{\"name\":\"Journal of Neuroimaging\",\"volume\":\"34 6\",\"pages\":\"742-749\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Neuroimaging\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/jon.13241\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neuroimaging","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jon.13241","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
Deep learning from head CT scans to predict elevated intracranial pressure
Background and Purpose
Elevated intracranial pressure (ICP) resulting from severe head injury or stroke poses a risk of secondary brain injury that requires neurosurgical intervention. However, currently available noninvasive monitoring techniques for predicting ICP are not sufficiently advanced. We aimed to develop a minimally invasive ICP prediction model using simple CT images to prevent secondary brain injury caused by elevated ICP.
Methods
We used the following three methods to determine the presence or absence of elevated ICP using midbrain-level CT images: (1) a deep learning model created using the Python (PY) programming language; (2) a model based on cistern narrowing and scaling of brainstem deformities and presence of hydrocephalus, analyzed using the statistical tool Prediction One (PO); and (3) identification of ICP by senior residents (SRs). We compared the accuracy of the validation and test data using fivefold cross-validation and visualized or quantified the areas of interest in the models.
Results
The accuracy of the validation data for the PY, PO, and SR methods was 83.68% (83.42%-85.13%), 85.71% (73.81%-88.10%), and 66.67% (55.96%-72.62%), respectively. Significant differences in accuracy were observed between the PY and SR methods. Test data accuracy was 77.27% (70.45%-77.2%), 84.09% (75.00%-85.23%), and 61.36% (56.82%-68.18%), respectively.
Conclusions
Overall, the outcomes suggest that these newly developed models may be valuable tools for the rapid and accurate detection of elevated ICP in clinical practice. These models can easily be applied to other sites, as a single CT image at the midbrain level can provide a highly accurate diagnosis.
期刊介绍:
Start reading the Journal of Neuroimaging to learn the latest neurological imaging techniques. The peer-reviewed research is written in a practical clinical context, giving you the information you need on:
MRI
CT
Carotid Ultrasound and TCD
SPECT
PET
Endovascular Surgical Neuroradiology
Functional MRI
Xenon CT
and other new and upcoming neuroscientific modalities.The Journal of Neuroimaging addresses the full spectrum of human nervous system disease, including stroke, neoplasia, degenerating and demyelinating disease, epilepsy, tumors, lesions, infectious disease, cerebral vascular arterial diseases, toxic-metabolic disease, psychoses, dementias, heredo-familial disease, and trauma.Offering original research, review articles, case reports, neuroimaging CPCs, and evaluations of instruments and technology relevant to the nervous system, the Journal of Neuroimaging focuses on useful clinical developments and applications, tested techniques and interpretations, patient care, diagnostics, and therapeutics. Start reading today!