{"title":"基于Boruta算法和深度学习的PCI后支架内再狭窄预测模型:血液胆固醇和淋巴细胞比率的作用","authors":"Ling Hou, Ke Su, Ting He, Jinbo Zhao, Yuanhong Li","doi":"10.2147/JMDH.S487511","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Percutaneous coronary intervention (PCI) is the primary treatment for acute myocardial infarction (AMI). However, in-stent restenosis (ISR) remains a significant limitation to the efficacy of PCI. The cholesterol-to-lymphocyte ratio (CLR), a novel biomarker associated with inflammation and dyslipidemia, may have predictive value for ISR. Deep learning-based models, such as the multilayer perceptron (MLP), can aid in establishing predictive models for ISR using CLR.</p><p><strong>Methods: </strong>A retrospective analysis was conducted on clinical and laboratory data from 1967 patients. The Boruta algorithm was employed to identify key features associated with ISR. An MLP model was developed and divided into training and validation sets. Model performance was evaluated using ROC curves and calibration plots.</p><p><strong>Results: </strong>Patients in the ISR group exhibited significantly higher levels of CLR and low-density lipoprotein (LDL) compared to the non-ISR group. The Boruta algorithm identified 21 important features for subsequent modeling. The MLP model achieved an AUC of 0.95 on the validation set and 0.63 on the test set, indicating good predictive performance. Calibration plots demonstrated good agreement between predicted and observed outcomes. Feature importance analysis revealed that the number of initial stent implants, hemoglobin levels, Gensini score, CLR, and white blood cell count were significant predictors of ISR. Partial dependence plots (PDP) confirmed CLR as a key predictor for ISR.</p><p><strong>Conclusion: </strong>The CLR, as a biomarker that integrates lipid metabolism and inflammation, shows significant potential in predicting coronary ISR. The MLP model, based on deep learning, demonstrated robust predictive capabilities, offering new insights and strategies for clinical decision-making.</p>","PeriodicalId":16357,"journal":{"name":"Journal of Multidisciplinary Healthcare","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11472739/pdf/","citationCount":"0","resultStr":"{\"title\":\"Prediction Model for in-Stent Restenosis Post-PCI Based on Boruta Algorithm and Deep Learning: The Role of Blood Cholesterol and Lymphocyte Ratio.\",\"authors\":\"Ling Hou, Ke Su, Ting He, Jinbo Zhao, Yuanhong Li\",\"doi\":\"10.2147/JMDH.S487511\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Percutaneous coronary intervention (PCI) is the primary treatment for acute myocardial infarction (AMI). However, in-stent restenosis (ISR) remains a significant limitation to the efficacy of PCI. The cholesterol-to-lymphocyte ratio (CLR), a novel biomarker associated with inflammation and dyslipidemia, may have predictive value for ISR. Deep learning-based models, such as the multilayer perceptron (MLP), can aid in establishing predictive models for ISR using CLR.</p><p><strong>Methods: </strong>A retrospective analysis was conducted on clinical and laboratory data from 1967 patients. The Boruta algorithm was employed to identify key features associated with ISR. An MLP model was developed and divided into training and validation sets. Model performance was evaluated using ROC curves and calibration plots.</p><p><strong>Results: </strong>Patients in the ISR group exhibited significantly higher levels of CLR and low-density lipoprotein (LDL) compared to the non-ISR group. The Boruta algorithm identified 21 important features for subsequent modeling. The MLP model achieved an AUC of 0.95 on the validation set and 0.63 on the test set, indicating good predictive performance. Calibration plots demonstrated good agreement between predicted and observed outcomes. Feature importance analysis revealed that the number of initial stent implants, hemoglobin levels, Gensini score, CLR, and white blood cell count were significant predictors of ISR. Partial dependence plots (PDP) confirmed CLR as a key predictor for ISR.</p><p><strong>Conclusion: </strong>The CLR, as a biomarker that integrates lipid metabolism and inflammation, shows significant potential in predicting coronary ISR. The MLP model, based on deep learning, demonstrated robust predictive capabilities, offering new insights and strategies for clinical decision-making.</p>\",\"PeriodicalId\":16357,\"journal\":{\"name\":\"Journal of Multidisciplinary Healthcare\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11472739/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Multidisciplinary Healthcare\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2147/JMDH.S487511\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"HEALTH CARE SCIENCES & SERVICES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Multidisciplinary Healthcare","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2147/JMDH.S487511","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
Prediction Model for in-Stent Restenosis Post-PCI Based on Boruta Algorithm and Deep Learning: The Role of Blood Cholesterol and Lymphocyte Ratio.
Background: Percutaneous coronary intervention (PCI) is the primary treatment for acute myocardial infarction (AMI). However, in-stent restenosis (ISR) remains a significant limitation to the efficacy of PCI. The cholesterol-to-lymphocyte ratio (CLR), a novel biomarker associated with inflammation and dyslipidemia, may have predictive value for ISR. Deep learning-based models, such as the multilayer perceptron (MLP), can aid in establishing predictive models for ISR using CLR.
Methods: A retrospective analysis was conducted on clinical and laboratory data from 1967 patients. The Boruta algorithm was employed to identify key features associated with ISR. An MLP model was developed and divided into training and validation sets. Model performance was evaluated using ROC curves and calibration plots.
Results: Patients in the ISR group exhibited significantly higher levels of CLR and low-density lipoprotein (LDL) compared to the non-ISR group. The Boruta algorithm identified 21 important features for subsequent modeling. The MLP model achieved an AUC of 0.95 on the validation set and 0.63 on the test set, indicating good predictive performance. Calibration plots demonstrated good agreement between predicted and observed outcomes. Feature importance analysis revealed that the number of initial stent implants, hemoglobin levels, Gensini score, CLR, and white blood cell count were significant predictors of ISR. Partial dependence plots (PDP) confirmed CLR as a key predictor for ISR.
Conclusion: The CLR, as a biomarker that integrates lipid metabolism and inflammation, shows significant potential in predicting coronary ISR. The MLP model, based on deep learning, demonstrated robust predictive capabilities, offering new insights and strategies for clinical decision-making.
期刊介绍:
The Journal of Multidisciplinary Healthcare (JMDH) aims to represent and publish research in healthcare areas delivered by practitioners of different disciplines. This includes studies and reviews conducted by multidisciplinary teams as well as research which evaluates or reports the results or conduct of such teams or healthcare processes in general. The journal covers a very wide range of areas and we welcome submissions from practitioners at all levels and from all over the world. Good healthcare is not bounded by person, place or time and the journal aims to reflect this. The JMDH is published as an open-access journal to allow this wide range of practical, patient relevant research to be immediately available to practitioners who can access and use it immediately upon publication.