{"title":"在牛模型中对射频消融心室心肌的各种双极配置进行容积病灶分析和验证。","authors":"Saikiran Kakarla, UmaShankar Pr, Sabari Saravanan, Narayanan Namboodiri","doi":"10.1007/s10840-024-01927-3","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The bipolar radiofrequency ablation(B-RFA) strategy was increasingly used to target deep intramural re-entrant foci responsible for the arrhythmia not ablated by conventional unipolar RFA / sequential unipolar RFA. Lesional characteristics of various bipolar configurations were largely unknown.</p><p><strong>Objective: </strong>To investigate the lesional geometry in relation to various factors to determine the most effective ablation strategy that minimises steam pops and achieves transmurality. To assess the temperatures at the return electrode.</p><p><strong>Methods: </strong>A custom-made validated ex-vivo bipolar ablation model was used to assess lesion formation. The myocardial sample was placed between two ablation catheters in four different orientations. Lesions were created using different power (30 W, 40 W, 50 W) and time settings(30, 40 and 50 s) with different catheter orientations. Data was analysed using binary logistic regression and multiple linear regression.</p><p><strong>Results: </strong>Among 107 lesions, The volume of the active catheter lesion (266 +/- 137 mm^3) significantly differed from their return electrode counterparts (130 +/- 91.8 mm^3) (p < 0.001), and the temperatures at the return electrode end were lower than at the active electrode (p = 0.004). Higher power and longer duration application led to more frequent steam pops (p < 0.001), while true parallel configuration resulted in fewer steam pops (p < 0.001).</p><p><strong>Conclusion: </strong>A custom model without ground electrode temperature monitoring is safe and cost-effective. The safest strategy is a true parallel configuration with an inter-electrode distance of at least 15 mm and a power of 30 W to 40 W, which generates lower steam pops and better transmurality.</p>","PeriodicalId":16202,"journal":{"name":"Journal of Interventional Cardiac Electrophysiology","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Volumetric lesion analysis and validation of various bipolar configurations in radiofrequency ablation of ventricular myocardium in a bovine model.\",\"authors\":\"Saikiran Kakarla, UmaShankar Pr, Sabari Saravanan, Narayanan Namboodiri\",\"doi\":\"10.1007/s10840-024-01927-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>The bipolar radiofrequency ablation(B-RFA) strategy was increasingly used to target deep intramural re-entrant foci responsible for the arrhythmia not ablated by conventional unipolar RFA / sequential unipolar RFA. Lesional characteristics of various bipolar configurations were largely unknown.</p><p><strong>Objective: </strong>To investigate the lesional geometry in relation to various factors to determine the most effective ablation strategy that minimises steam pops and achieves transmurality. To assess the temperatures at the return electrode.</p><p><strong>Methods: </strong>A custom-made validated ex-vivo bipolar ablation model was used to assess lesion formation. The myocardial sample was placed between two ablation catheters in four different orientations. Lesions were created using different power (30 W, 40 W, 50 W) and time settings(30, 40 and 50 s) with different catheter orientations. Data was analysed using binary logistic regression and multiple linear regression.</p><p><strong>Results: </strong>Among 107 lesions, The volume of the active catheter lesion (266 +/- 137 mm^3) significantly differed from their return electrode counterparts (130 +/- 91.8 mm^3) (p < 0.001), and the temperatures at the return electrode end were lower than at the active electrode (p = 0.004). Higher power and longer duration application led to more frequent steam pops (p < 0.001), while true parallel configuration resulted in fewer steam pops (p < 0.001).</p><p><strong>Conclusion: </strong>A custom model without ground electrode temperature monitoring is safe and cost-effective. The safest strategy is a true parallel configuration with an inter-electrode distance of at least 15 mm and a power of 30 W to 40 W, which generates lower steam pops and better transmurality.</p>\",\"PeriodicalId\":16202,\"journal\":{\"name\":\"Journal of Interventional Cardiac Electrophysiology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Interventional Cardiac Electrophysiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s10840-024-01927-3\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Interventional Cardiac Electrophysiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10840-024-01927-3","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
Volumetric lesion analysis and validation of various bipolar configurations in radiofrequency ablation of ventricular myocardium in a bovine model.
Background: The bipolar radiofrequency ablation(B-RFA) strategy was increasingly used to target deep intramural re-entrant foci responsible for the arrhythmia not ablated by conventional unipolar RFA / sequential unipolar RFA. Lesional characteristics of various bipolar configurations were largely unknown.
Objective: To investigate the lesional geometry in relation to various factors to determine the most effective ablation strategy that minimises steam pops and achieves transmurality. To assess the temperatures at the return electrode.
Methods: A custom-made validated ex-vivo bipolar ablation model was used to assess lesion formation. The myocardial sample was placed between two ablation catheters in four different orientations. Lesions were created using different power (30 W, 40 W, 50 W) and time settings(30, 40 and 50 s) with different catheter orientations. Data was analysed using binary logistic regression and multiple linear regression.
Results: Among 107 lesions, The volume of the active catheter lesion (266 +/- 137 mm^3) significantly differed from their return electrode counterparts (130 +/- 91.8 mm^3) (p < 0.001), and the temperatures at the return electrode end were lower than at the active electrode (p = 0.004). Higher power and longer duration application led to more frequent steam pops (p < 0.001), while true parallel configuration resulted in fewer steam pops (p < 0.001).
Conclusion: A custom model without ground electrode temperature monitoring is safe and cost-effective. The safest strategy is a true parallel configuration with an inter-electrode distance of at least 15 mm and a power of 30 W to 40 W, which generates lower steam pops and better transmurality.
期刊介绍:
The Journal of Interventional Cardiac Electrophysiology is an international publication devoted to fostering research in and development of interventional techniques and therapies for the management of cardiac arrhythmias. It is designed primarily to present original research studies and scholarly scientific reviews of basic and applied science and clinical research in this field. The Journal will adopt a multidisciplinary approach to link physical, experimental, and clinical sciences as applied to the development of and practice in interventional electrophysiology. The Journal will examine techniques ranging from molecular, chemical and pharmacologic therapies to device and ablation technology. Accordingly, original research in clinical, epidemiologic and basic science arenas will be considered for publication. Applied engineering or physical science studies pertaining to interventional electrophysiology will be encouraged. The Journal is committed to providing comprehensive and detailed treatment of major interventional therapies and innovative techniques in a structured and clinically relevant manner. It is directed at clinical practitioners and investigators in the rapidly growing field of interventional electrophysiology. The editorial staff and board reflect this bias and include noted international experts in this area with a wealth of expertise in basic and clinical investigation. Peer review of all submissions, conflict of interest guidelines and periodic editorial board review of all Journal policies have been established.