缺乏 Poxin 的痘病毒在基因组复制之前会被 cGAS 感知。

IF 3.6 4区 医学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Sian Lant, Alasdair J M Hood, Joe A Holley, Ailish Ellis, Lucy Eke, Rebecca P Sumner, David O Ulaeto, Carlos Maluquer de Motes
{"title":"缺乏 Poxin 的痘病毒在基因组复制之前会被 cGAS 感知。","authors":"Sian Lant, Alasdair J M Hood, Joe A Holley, Ailish Ellis, Lucy Eke, Rebecca P Sumner, David O Ulaeto, Carlos Maluquer de Motes","doi":"10.1099/jgv.0.002036","DOIUrl":null,"url":null,"abstract":"<p><p>Poxviruses are dsDNA viruses infecting a wide range of cell types, where they need to contend with multiple host antiviral pathways, including DNA and RNA sensing. Accordingly, poxviruses encode a variety of immune antagonists, most of which are expressed early during infection from within virus cores before uncoating and genome release take place. Amongst these antagonists, the poxvirus immune nuclease (poxin) counteracts the cyclic 2'3'-GMP-AMP (2'3'-cGAMP) synthase (cGAS)/stimulator of interferon genes DNA sensing pathway by degrading the immunomodulatory cyclic dinucleotide 2'3'-cGAMP, the product of activated cGAS. Here, we use poxviruses engineered to lack poxin to investigate how virus infection triggers the activation of STING and its downstream transcription factor interferon-responsive factor 3 (IRF3). Our results demonstrate that poxin-deficient vaccinia virus (VACV) and ectromelia virus (ECTV) induce IRF3 activation in primary fibroblasts and differentiated macrophages, although to a lower extent in VACV compared to ECTV. In fibroblasts, IRF3 activation was detectable at 10 h post-infection (hpi) and was abolished by the DNA replication inhibitor cytosine arabinoside (AraC), indicating that the sensing was mediated by replicated genomes. In macrophages, IRF3 activation was detectable at 4 hpi, and this was not affected by AraC, suggesting that the sensing in this cell type was induced by genomes released from incoming virions. In agreement with this, macrophages expressing short hairpin RNA (shRNA) against the virus uncoating factor D5 showed reduced IRF3 activation upon infection. Collectively, our data show that the viral genome is sensed by cGAS prior to and during genome replication, but immune activation downstream of it is effectively suppressed by poxin. Our data also support the model where virus uncoating acts as an immune evasion strategy to simultaneously cloak the viral genome and allow the expression of early immune antagonists.</p>","PeriodicalId":15880,"journal":{"name":"Journal of General Virology","volume":"105 10","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Poxin-deficient poxviruses are sensed by cGAS prior to genome replication.\",\"authors\":\"Sian Lant, Alasdair J M Hood, Joe A Holley, Ailish Ellis, Lucy Eke, Rebecca P Sumner, David O Ulaeto, Carlos Maluquer de Motes\",\"doi\":\"10.1099/jgv.0.002036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Poxviruses are dsDNA viruses infecting a wide range of cell types, where they need to contend with multiple host antiviral pathways, including DNA and RNA sensing. Accordingly, poxviruses encode a variety of immune antagonists, most of which are expressed early during infection from within virus cores before uncoating and genome release take place. Amongst these antagonists, the poxvirus immune nuclease (poxin) counteracts the cyclic 2'3'-GMP-AMP (2'3'-cGAMP) synthase (cGAS)/stimulator of interferon genes DNA sensing pathway by degrading the immunomodulatory cyclic dinucleotide 2'3'-cGAMP, the product of activated cGAS. Here, we use poxviruses engineered to lack poxin to investigate how virus infection triggers the activation of STING and its downstream transcription factor interferon-responsive factor 3 (IRF3). Our results demonstrate that poxin-deficient vaccinia virus (VACV) and ectromelia virus (ECTV) induce IRF3 activation in primary fibroblasts and differentiated macrophages, although to a lower extent in VACV compared to ECTV. In fibroblasts, IRF3 activation was detectable at 10 h post-infection (hpi) and was abolished by the DNA replication inhibitor cytosine arabinoside (AraC), indicating that the sensing was mediated by replicated genomes. In macrophages, IRF3 activation was detectable at 4 hpi, and this was not affected by AraC, suggesting that the sensing in this cell type was induced by genomes released from incoming virions. In agreement with this, macrophages expressing short hairpin RNA (shRNA) against the virus uncoating factor D5 showed reduced IRF3 activation upon infection. Collectively, our data show that the viral genome is sensed by cGAS prior to and during genome replication, but immune activation downstream of it is effectively suppressed by poxin. Our data also support the model where virus uncoating acts as an immune evasion strategy to simultaneously cloak the viral genome and allow the expression of early immune antagonists.</p>\",\"PeriodicalId\":15880,\"journal\":{\"name\":\"Journal of General Virology\",\"volume\":\"105 10\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of General Virology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1099/jgv.0.002036\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of General Virology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1099/jgv.0.002036","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

痘病毒是dsDNA病毒,可感染多种类型的细胞,需要与宿主的多种抗病毒途径(包括DNA和RNA感应)抗衡。因此,痘病毒编码了多种免疫拮抗剂,其中大部分在病毒感染的早期,即在病毒核内表达,然后才进行脱包膜和基因组释放。在这些拮抗剂中,痘病毒免疫核酸酶(poxin)通过降解免疫调节环状二核苷酸 2'3'-cGAMP(活化的 cGAS 的产物)来抵消环状 2'3'-GMP-AMP(2'3'-cGAMP)合成酶(cGAS)/干扰素基因 DNA 感受途径。在这里,我们利用缺失poxin的痘病毒来研究病毒感染如何触发STING及其下游转录因子干扰素反应因子3(IRF3)的活化。我们的研究结果表明,痘素缺陷型疫苗病毒(VACV)和外胚瘤病毒(ECTV)可诱导原代成纤维细胞和分化巨噬细胞中的IRF3活化,但VACV的活化程度低于ECTV。在成纤维细胞中,感染后 10 小时(hpi)即可检测到 IRF3 激活,DNA 复制抑制剂胞嘧啶阿拉伯糖苷(AraC)可消除这种激活,表明这种感应是由复制的基因组介导的。在巨噬细胞中,4 hpi时可检测到IRF3活化,AraC对其没有影响,这表明这种细胞类型的感应是由进入的病毒释放的基因组诱导的。与此相一致的是,表达针对病毒解衣因子 D5 的短发夹 RNA(shRNA)的巨噬细胞在感染后显示出 IRF3 激活减少。总之,我们的数据表明,病毒基因组在复制之前和复制过程中会被 cGAS 感知,但其下游的免疫激活会被 poxin 有效抑制。我们的数据还支持这样一种模型,即病毒解衣是一种免疫逃避策略,它可以同时隐藏病毒基因组并允许早期免疫拮抗剂的表达。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Poxin-deficient poxviruses are sensed by cGAS prior to genome replication.

Poxviruses are dsDNA viruses infecting a wide range of cell types, where they need to contend with multiple host antiviral pathways, including DNA and RNA sensing. Accordingly, poxviruses encode a variety of immune antagonists, most of which are expressed early during infection from within virus cores before uncoating and genome release take place. Amongst these antagonists, the poxvirus immune nuclease (poxin) counteracts the cyclic 2'3'-GMP-AMP (2'3'-cGAMP) synthase (cGAS)/stimulator of interferon genes DNA sensing pathway by degrading the immunomodulatory cyclic dinucleotide 2'3'-cGAMP, the product of activated cGAS. Here, we use poxviruses engineered to lack poxin to investigate how virus infection triggers the activation of STING and its downstream transcription factor interferon-responsive factor 3 (IRF3). Our results demonstrate that poxin-deficient vaccinia virus (VACV) and ectromelia virus (ECTV) induce IRF3 activation in primary fibroblasts and differentiated macrophages, although to a lower extent in VACV compared to ECTV. In fibroblasts, IRF3 activation was detectable at 10 h post-infection (hpi) and was abolished by the DNA replication inhibitor cytosine arabinoside (AraC), indicating that the sensing was mediated by replicated genomes. In macrophages, IRF3 activation was detectable at 4 hpi, and this was not affected by AraC, suggesting that the sensing in this cell type was induced by genomes released from incoming virions. In agreement with this, macrophages expressing short hairpin RNA (shRNA) against the virus uncoating factor D5 showed reduced IRF3 activation upon infection. Collectively, our data show that the viral genome is sensed by cGAS prior to and during genome replication, but immune activation downstream of it is effectively suppressed by poxin. Our data also support the model where virus uncoating acts as an immune evasion strategy to simultaneously cloak the viral genome and allow the expression of early immune antagonists.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of General Virology
Journal of General Virology 医学-病毒学
CiteScore
7.70
自引率
2.60%
发文量
91
审稿时长
3 months
期刊介绍: JOURNAL OF GENERAL VIROLOGY (JGV), a journal of the Society for General Microbiology (SGM), publishes high-calibre research papers with high production standards, giving the journal a worldwide reputation for excellence and attracting an eminent audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信