Mona H Abo Zaid, Nahed El-Enany, Aziza E Mostafa, Ghada M Hadad, Fathalla Belal
{"title":"微波合成的银纳米颗粒作为光谱荧光传感器测定法维拉韦纳米浓度的实用性:应用于剂型和加标人体血浆。","authors":"Mona H Abo Zaid, Nahed El-Enany, Aziza E Mostafa, Ghada M Hadad, Fathalla Belal","doi":"10.1007/s10895-024-03979-0","DOIUrl":null,"url":null,"abstract":"<p><p>A simple and facile microwave-assisted method was developed for the synthesis of highly fluorescent silver-nanoparticles (Ag-NPs). The synthesis of silver-nanoparticles depends on a redox reaction between silver nitrate and ascorbic acid using chitosan as a stabilizing agent. The produced Ag-NPs were characterized using Zeta potential and transmission electron microscope micrograph where they are spherical in shape with smooth surface morphology and size of 26.81 ± 2.2 nm. Favipiravir (FAV) was found to cause an obvious enhancement in the fluorescence of Ag-NPs; hence, they were used for its spectrofluorimetric estimation. The fluorescence intensity was measured at 430 nm after excitation at 360 nm. Under optimum conditions, a good linear relationship was accomplished between the FAV concentration and the fluorescence intensity in a range of (5.0-200.0) ng/mL with a limit of detection of 1.59 ng/mL. The method was successfully applied for the assay of the drug in its commercial tablets and spiked human plasma samples, and the results obtained were satisfactory.</p>","PeriodicalId":15800,"journal":{"name":"Journal of Fluorescence","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Utility of Microwave-Synthesized Silver Nano Particles as Spectrofluorimetric Sensors for the Determination of Nano Concentrations of Favipravir: Application to Dosage Forms and Spiked Human Plasma.\",\"authors\":\"Mona H Abo Zaid, Nahed El-Enany, Aziza E Mostafa, Ghada M Hadad, Fathalla Belal\",\"doi\":\"10.1007/s10895-024-03979-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A simple and facile microwave-assisted method was developed for the synthesis of highly fluorescent silver-nanoparticles (Ag-NPs). The synthesis of silver-nanoparticles depends on a redox reaction between silver nitrate and ascorbic acid using chitosan as a stabilizing agent. The produced Ag-NPs were characterized using Zeta potential and transmission electron microscope micrograph where they are spherical in shape with smooth surface morphology and size of 26.81 ± 2.2 nm. Favipiravir (FAV) was found to cause an obvious enhancement in the fluorescence of Ag-NPs; hence, they were used for its spectrofluorimetric estimation. The fluorescence intensity was measured at 430 nm after excitation at 360 nm. Under optimum conditions, a good linear relationship was accomplished between the FAV concentration and the fluorescence intensity in a range of (5.0-200.0) ng/mL with a limit of detection of 1.59 ng/mL. The method was successfully applied for the assay of the drug in its commercial tablets and spiked human plasma samples, and the results obtained were satisfactory.</p>\",\"PeriodicalId\":15800,\"journal\":{\"name\":\"Journal of Fluorescence\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Fluorescence\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1007/s10895-024-03979-0\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fluorescence","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s10895-024-03979-0","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Utility of Microwave-Synthesized Silver Nano Particles as Spectrofluorimetric Sensors for the Determination of Nano Concentrations of Favipravir: Application to Dosage Forms and Spiked Human Plasma.
A simple and facile microwave-assisted method was developed for the synthesis of highly fluorescent silver-nanoparticles (Ag-NPs). The synthesis of silver-nanoparticles depends on a redox reaction between silver nitrate and ascorbic acid using chitosan as a stabilizing agent. The produced Ag-NPs were characterized using Zeta potential and transmission electron microscope micrograph where they are spherical in shape with smooth surface morphology and size of 26.81 ± 2.2 nm. Favipiravir (FAV) was found to cause an obvious enhancement in the fluorescence of Ag-NPs; hence, they were used for its spectrofluorimetric estimation. The fluorescence intensity was measured at 430 nm after excitation at 360 nm. Under optimum conditions, a good linear relationship was accomplished between the FAV concentration and the fluorescence intensity in a range of (5.0-200.0) ng/mL with a limit of detection of 1.59 ng/mL. The method was successfully applied for the assay of the drug in its commercial tablets and spiked human plasma samples, and the results obtained were satisfactory.
期刊介绍:
Journal of Fluorescence is an international forum for the publication of peer-reviewed original articles that advance the practice of this established spectroscopic technique. Topics covered include advances in theory/and or data analysis, studies of the photophysics of aromatic molecules, solvent, and environmental effects, development of stationary or time-resolved measurements, advances in fluorescence microscopy, imaging, photobleaching/recovery measurements, and/or phosphorescence for studies of cell biology, chemical biology and the advanced uses of fluorescence in flow cytometry/analysis, immunology, high throughput screening/drug discovery, DNA sequencing/arrays, genomics and proteomics. Typical applications might include studies of macromolecular dynamics and conformation, intracellular chemistry, and gene expression. The journal also publishes papers that describe the synthesis and characterization of new fluorophores, particularly those displaying unique sensitivities and/or optical properties. In addition to original articles, the Journal also publishes reviews, rapid communications, short communications, letters to the editor, topical news articles, and technical and design notes.