Mark R Hirsbrunner, J Wayne Mullinax, Yizhi Shen, David B Williams-Young, Katherine Klymko, Roel Van Beeumen, Norm M Tubman
{"title":"变分量子求解器的电路生成量子子空间算法。","authors":"Mark R Hirsbrunner, J Wayne Mullinax, Yizhi Shen, David B Williams-Young, Katherine Klymko, Roel Van Beeumen, Norm M Tubman","doi":"10.1063/5.0224883","DOIUrl":null,"url":null,"abstract":"<p><p>Recent research has shown that wavefunction evolution in real and imaginary time can generate quantum subspaces with significant utility for obtaining accurate ground state energies. Inspired by these methods, we propose combining quantum subspace techniques with the variational quantum eigensolver (VQE). In our approach, the parameterized quantum circuit is divided into a series of smaller subcircuits. The sequential application of these subcircuits to an initial state generates a set of wavefunctions that we use as a quantum subspace to obtain high-accuracy groundstate energies. We call this technique the circuit subspace variational quantum eigensolver (CSVQE) algorithm. By benchmarking CSVQE on a range of quantum chemistry problems, we show that it can achieve significant error reduction in the best case compared to conventional VQE, particularly for poorly optimized circuits, greatly improving convergence rates. Furthermore, we demonstrate that when applied to circuits trapped at local minima, CSVQE can produce energies close to the global minimum of the energy landscape, making it a potentially powerful tool for diagnosing local minima.</p>","PeriodicalId":15313,"journal":{"name":"Journal of Chemical Physics","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A circuit-generated quantum subspace algorithm for the variational quantum eigensolver.\",\"authors\":\"Mark R Hirsbrunner, J Wayne Mullinax, Yizhi Shen, David B Williams-Young, Katherine Klymko, Roel Van Beeumen, Norm M Tubman\",\"doi\":\"10.1063/5.0224883\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Recent research has shown that wavefunction evolution in real and imaginary time can generate quantum subspaces with significant utility for obtaining accurate ground state energies. Inspired by these methods, we propose combining quantum subspace techniques with the variational quantum eigensolver (VQE). In our approach, the parameterized quantum circuit is divided into a series of smaller subcircuits. The sequential application of these subcircuits to an initial state generates a set of wavefunctions that we use as a quantum subspace to obtain high-accuracy groundstate energies. We call this technique the circuit subspace variational quantum eigensolver (CSVQE) algorithm. By benchmarking CSVQE on a range of quantum chemistry problems, we show that it can achieve significant error reduction in the best case compared to conventional VQE, particularly for poorly optimized circuits, greatly improving convergence rates. Furthermore, we demonstrate that when applied to circuits trapped at local minima, CSVQE can produce energies close to the global minimum of the energy landscape, making it a potentially powerful tool for diagnosing local minima.</p>\",\"PeriodicalId\":15313,\"journal\":{\"name\":\"Journal of Chemical Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Physics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0224883\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1063/5.0224883","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
A circuit-generated quantum subspace algorithm for the variational quantum eigensolver.
Recent research has shown that wavefunction evolution in real and imaginary time can generate quantum subspaces with significant utility for obtaining accurate ground state energies. Inspired by these methods, we propose combining quantum subspace techniques with the variational quantum eigensolver (VQE). In our approach, the parameterized quantum circuit is divided into a series of smaller subcircuits. The sequential application of these subcircuits to an initial state generates a set of wavefunctions that we use as a quantum subspace to obtain high-accuracy groundstate energies. We call this technique the circuit subspace variational quantum eigensolver (CSVQE) algorithm. By benchmarking CSVQE on a range of quantum chemistry problems, we show that it can achieve significant error reduction in the best case compared to conventional VQE, particularly for poorly optimized circuits, greatly improving convergence rates. Furthermore, we demonstrate that when applied to circuits trapped at local minima, CSVQE can produce energies close to the global minimum of the energy landscape, making it a potentially powerful tool for diagnosing local minima.
期刊介绍:
The Journal of Chemical Physics publishes quantitative and rigorous science of long-lasting value in methods and applications of chemical physics. The Journal also publishes brief Communications of significant new findings, Perspectives on the latest advances in the field, and Special Topic issues. The Journal focuses on innovative research in experimental and theoretical areas of chemical physics, including spectroscopy, dynamics, kinetics, statistical mechanics, and quantum mechanics. In addition, topical areas such as polymers, soft matter, materials, surfaces/interfaces, and systems of biological relevance are of increasing importance.
Topical coverage includes:
Theoretical Methods and Algorithms
Advanced Experimental Techniques
Atoms, Molecules, and Clusters
Liquids, Glasses, and Crystals
Surfaces, Interfaces, and Materials
Polymers and Soft Matter
Biological Molecules and Networks.