Che Haijie, Wang Lei, Wang Kai, Lin Guodong, Liu Guolong, Yang Zhongzhen, Wang Junru, Liu Ying, Jiang Xiaorui
{"title":"鱼胶原海绵与人脐带间充质干细胞用于大鼠糖尿病伤口修复。","authors":"Che Haijie, Wang Lei, Wang Kai, Lin Guodong, Liu Guolong, Yang Zhongzhen, Wang Junru, Liu Ying, Jiang Xiaorui","doi":"10.1002/jcp.31471","DOIUrl":null,"url":null,"abstract":"<p><p>Stem cell therapy offers a novel approach to treating difbetic foot ulcers. Fish skin decellularized matrix, a type I collagen, provides a promising carrier for stem cells, creating a supportive microenvironment that enhances cell survival and therapeutic potential. This study aims to investigate the effects and mechanisms of human umbilical cord mesenchymal stem cells (HUCMSCs) loaded onto a fish collagen sponge for wound healing in diabetic rats. The study evaluates stem cell-loading efficiency with fish collagen sponge in vitro, assesses material distribution on diabetic rat wounds, and establishes a wound model. Rats are divided into the Self-healing group, Fish collagen sponge group, and Sponge loaded with HUCMSCs group. Therapeutic effects are evaluated through various analyses, including histopathology and reverse transcription polymerase chain reaction for collagen-related gene expression levels. Compared to the self-healing group, both the fish collagen group and the composite group show faster wound repair and improved healing outcomes. The composite group exhibits superior wound healing quality, with fish collagen contributing to enhanced tissue regeneration through collagen regulation at the wound site. Loading HUCMSCs onto a fish collagen sponge shows promise for treating diabetic wounds by addressing nutrient deficiency and cell supply issues, offering potential benefits for patients undergoing treatment.</p>","PeriodicalId":15220,"journal":{"name":"Journal of Cellular Physiology","volume":" ","pages":"e31471"},"PeriodicalIF":4.5000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fish collagen sponge with human umbilical cord mesenchymal stem cells for diabetic wound repair in rats.\",\"authors\":\"Che Haijie, Wang Lei, Wang Kai, Lin Guodong, Liu Guolong, Yang Zhongzhen, Wang Junru, Liu Ying, Jiang Xiaorui\",\"doi\":\"10.1002/jcp.31471\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Stem cell therapy offers a novel approach to treating difbetic foot ulcers. Fish skin decellularized matrix, a type I collagen, provides a promising carrier for stem cells, creating a supportive microenvironment that enhances cell survival and therapeutic potential. This study aims to investigate the effects and mechanisms of human umbilical cord mesenchymal stem cells (HUCMSCs) loaded onto a fish collagen sponge for wound healing in diabetic rats. The study evaluates stem cell-loading efficiency with fish collagen sponge in vitro, assesses material distribution on diabetic rat wounds, and establishes a wound model. Rats are divided into the Self-healing group, Fish collagen sponge group, and Sponge loaded with HUCMSCs group. Therapeutic effects are evaluated through various analyses, including histopathology and reverse transcription polymerase chain reaction for collagen-related gene expression levels. Compared to the self-healing group, both the fish collagen group and the composite group show faster wound repair and improved healing outcomes. The composite group exhibits superior wound healing quality, with fish collagen contributing to enhanced tissue regeneration through collagen regulation at the wound site. Loading HUCMSCs onto a fish collagen sponge shows promise for treating diabetic wounds by addressing nutrient deficiency and cell supply issues, offering potential benefits for patients undergoing treatment.</p>\",\"PeriodicalId\":15220,\"journal\":{\"name\":\"Journal of Cellular Physiology\",\"volume\":\" \",\"pages\":\"e31471\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cellular Physiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1002/jcp.31471\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cellular Physiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/jcp.31471","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Fish collagen sponge with human umbilical cord mesenchymal stem cells for diabetic wound repair in rats.
Stem cell therapy offers a novel approach to treating difbetic foot ulcers. Fish skin decellularized matrix, a type I collagen, provides a promising carrier for stem cells, creating a supportive microenvironment that enhances cell survival and therapeutic potential. This study aims to investigate the effects and mechanisms of human umbilical cord mesenchymal stem cells (HUCMSCs) loaded onto a fish collagen sponge for wound healing in diabetic rats. The study evaluates stem cell-loading efficiency with fish collagen sponge in vitro, assesses material distribution on diabetic rat wounds, and establishes a wound model. Rats are divided into the Self-healing group, Fish collagen sponge group, and Sponge loaded with HUCMSCs group. Therapeutic effects are evaluated through various analyses, including histopathology and reverse transcription polymerase chain reaction for collagen-related gene expression levels. Compared to the self-healing group, both the fish collagen group and the composite group show faster wound repair and improved healing outcomes. The composite group exhibits superior wound healing quality, with fish collagen contributing to enhanced tissue regeneration through collagen regulation at the wound site. Loading HUCMSCs onto a fish collagen sponge shows promise for treating diabetic wounds by addressing nutrient deficiency and cell supply issues, offering potential benefits for patients undergoing treatment.
期刊介绍:
The Journal of Cellular Physiology publishes reports of high biological significance in areas of eukaryotic cell biology and physiology, focusing on those articles that adopt a molecular mechanistic approach to investigate cell structure and function. There is appreciation for the application of cellular, biochemical, molecular and in vivo genetic approaches, as well as the power of genomics, proteomics, bioinformatics and systems biology. In particular, the Journal encourages submission of high-interest papers investigating the genetic and epigenetic regulation of proliferation and phenotype as well as cell fate and lineage commitment by growth factors, cytokines and their cognate receptors and signal transduction pathways that influence the expression, integration and activities of these physiological mediators. Similarly, the Journal encourages submission of manuscripts exploring the regulation of growth and differentiation by cell adhesion molecules in addition to the interplay between these processes and those induced by growth factors and cytokines. Studies on the genes and processes that regulate cell cycle progression and phase transition in eukaryotic cells, and the mechanisms that determine whether cells enter quiescence, proliferate or undergo apoptosis are also welcomed. Submission of papers that address contributions of the extracellular matrix to cellular phenotypes and physiological control as well as regulatory mechanisms governing fertilization, embryogenesis, gametogenesis, cell fate, lineage commitment, differentiation, development and dynamic parameters of cell motility are encouraged. Finally, the investigation of stem cells and changes that differentiate cancer cells from normal cells including studies on the properties and functions of oncogenes and tumor suppressor genes will remain as one of the major interests of the Journal.