{"title":"PGC7和HP1BP3的相互作用通过调节染色质构型维持Meg3-DMR甲基化","authors":"Yingxiang Liu, Weijie Hao, Chenyang Huang, Peiwen Feng, Hongliang Liu, Zekun Guo","doi":"10.1002/jcb.30667","DOIUrl":null,"url":null,"abstract":"<p><p>Genomic imprinting is essential for mammalian development. PGC7, an important maternal factor, binds to dimethylated histone H3K9 (H3K9me2), maintaining DNA methylation in zygotes and stem cells. However, the underlying molecular mechanisms of PGC7-maintained genomic imprinting in stem cells are not clear. Our previous study has identified that PGC7 interacts with HP1BP3, a novel member of the histone H1 family. In this study, we found that PGC7 interacts with the central globular domain of HP1BP3 through its C-terminal tail and that HP1BP3 is responsible for the recruitment of PGC7 at the Meg3 differentially methylated region (DMR) in the Dlk1-Dio3 imprinted domain. HP1BP3 or PGC7 depletion decreases enrichment in the Meg3-DMR, leading to DNA hypermethylation in this region. Moreover, the cooperative binding of PGC7 and HP1BP3 can antagonize the enrichment of DNMT3A in the Meg3-DMR, and the depletion of HP1BP3 or PGC7 separately induces chromosome decondensation in this region. In summary, this is the first study demonstrating that PGC7 and HP1BP3 synergistically maintain the methylation status of the Meg3-DMR by enabling a chromatin configuration that interferes with the binding of the de novo DNA methyltransferase DNMT3A.</p>","PeriodicalId":15219,"journal":{"name":"Journal of cellular biochemistry","volume":" ","pages":"e30667"},"PeriodicalIF":3.0000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interaction of PGC7 and HP1BP3 Maintains Meg3-DMR Methylation by Regulating Chromatin Configuration.\",\"authors\":\"Yingxiang Liu, Weijie Hao, Chenyang Huang, Peiwen Feng, Hongliang Liu, Zekun Guo\",\"doi\":\"10.1002/jcb.30667\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Genomic imprinting is essential for mammalian development. PGC7, an important maternal factor, binds to dimethylated histone H3K9 (H3K9me2), maintaining DNA methylation in zygotes and stem cells. However, the underlying molecular mechanisms of PGC7-maintained genomic imprinting in stem cells are not clear. Our previous study has identified that PGC7 interacts with HP1BP3, a novel member of the histone H1 family. In this study, we found that PGC7 interacts with the central globular domain of HP1BP3 through its C-terminal tail and that HP1BP3 is responsible for the recruitment of PGC7 at the Meg3 differentially methylated region (DMR) in the Dlk1-Dio3 imprinted domain. HP1BP3 or PGC7 depletion decreases enrichment in the Meg3-DMR, leading to DNA hypermethylation in this region. Moreover, the cooperative binding of PGC7 and HP1BP3 can antagonize the enrichment of DNMT3A in the Meg3-DMR, and the depletion of HP1BP3 or PGC7 separately induces chromosome decondensation in this region. In summary, this is the first study demonstrating that PGC7 and HP1BP3 synergistically maintain the methylation status of the Meg3-DMR by enabling a chromatin configuration that interferes with the binding of the de novo DNA methyltransferase DNMT3A.</p>\",\"PeriodicalId\":15219,\"journal\":{\"name\":\"Journal of cellular biochemistry\",\"volume\":\" \",\"pages\":\"e30667\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of cellular biochemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1002/jcb.30667\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of cellular biochemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/jcb.30667","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Interaction of PGC7 and HP1BP3 Maintains Meg3-DMR Methylation by Regulating Chromatin Configuration.
Genomic imprinting is essential for mammalian development. PGC7, an important maternal factor, binds to dimethylated histone H3K9 (H3K9me2), maintaining DNA methylation in zygotes and stem cells. However, the underlying molecular mechanisms of PGC7-maintained genomic imprinting in stem cells are not clear. Our previous study has identified that PGC7 interacts with HP1BP3, a novel member of the histone H1 family. In this study, we found that PGC7 interacts with the central globular domain of HP1BP3 through its C-terminal tail and that HP1BP3 is responsible for the recruitment of PGC7 at the Meg3 differentially methylated region (DMR) in the Dlk1-Dio3 imprinted domain. HP1BP3 or PGC7 depletion decreases enrichment in the Meg3-DMR, leading to DNA hypermethylation in this region. Moreover, the cooperative binding of PGC7 and HP1BP3 can antagonize the enrichment of DNMT3A in the Meg3-DMR, and the depletion of HP1BP3 or PGC7 separately induces chromosome decondensation in this region. In summary, this is the first study demonstrating that PGC7 and HP1BP3 synergistically maintain the methylation status of the Meg3-DMR by enabling a chromatin configuration that interferes with the binding of the de novo DNA methyltransferase DNMT3A.
期刊介绍:
The Journal of Cellular Biochemistry publishes descriptions of original research in which complex cellular, pathogenic, clinical, or animal model systems are studied by biochemical, molecular, genetic, epigenetic or quantitative ultrastructural approaches. Submission of papers reporting genomic, proteomic, bioinformatics and systems biology approaches to identify and characterize parameters of biological control in a cellular context are encouraged. The areas covered include, but are not restricted to, conditions, agents, regulatory networks, or differentiation states that influence structure, cell cycle & growth control, structure-function relationships.