Li Guo, Xuhao Zhuo, Chengyang Lu, Hua Guo, Zhi Chen, Gaige Wu, Fengrui Liu, Xiaochun Wei, Xueqin Rong, Pengcui Li
{"title":"组蛋白去乙酰化酶 4 的 N 端片段(1-669aa)通过 p53 依赖性内质网应激途径促进软骨细胞凋亡。","authors":"Li Guo, Xuhao Zhuo, Chengyang Lu, Hua Guo, Zhi Chen, Gaige Wu, Fengrui Liu, Xiaochun Wei, Xueqin Rong, Pengcui Li","doi":"10.1111/jcmm.70135","DOIUrl":null,"url":null,"abstract":"<p>Exogenous administration of the histone deacetylation 4 (HDAC4) protein can effectively delay osteoarthritis (OA) progression. However, HDAC4 is unstable and easily degrades into N-terminal (HDAC4-NT) and C-terminal fragments, and the HDAC4-NT can exert biological effects, but little is known about its role in chondrocytes and cartilage. Thus, the roles of HDAC4-NT fragments (1-289aa, 1-326aa and 1-669aa) in chondrocytes and cartilage were evaluated via real-time cell analysis (RTCA), safranin O staining, Sirius Red staining and nanoindentation. Molecular mechanisms were profiled via whole-transcriptome sequencing (RNA-seq) and verified in vitro and in vivo by a live cell real-time monitoring system, flow cytometry, western blotting and immunohistochemistry. The results showed that 1-669aa induced chondrocyte death and cartilage injury significantly, and the differentially expressed genes (DEGs) were enriched mainly in the apoptotic term and p53 signalling pathway. The validation experiments showed that 1-669aa induced chondrocyte apoptosis via the endoplasmic reticulum stress (ERS) pathway, and up-regulated p53 expression was essential for this process. Thus, we concluded that the HDAC4-NT fragment 1-669aa induces chondrocyte apoptosis via the p53-dependent ERS pathway, suggesting that in addition to overexpressing HDAC4, preventing it from degradation may be a new strategy for the treatment of OA.</p>","PeriodicalId":101321,"journal":{"name":"JOURNAL OF CELLULAR AND MOLECULAR MEDICINE","volume":"28 20","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2024-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11491302/pdf/","citationCount":"0","resultStr":"{\"title\":\"The N-terminal fragment of histone deacetylase 4 (1-669aa) promotes chondrocyte apoptosis via the p53-dependent endoplasmic reticulum stress pathway\",\"authors\":\"Li Guo, Xuhao Zhuo, Chengyang Lu, Hua Guo, Zhi Chen, Gaige Wu, Fengrui Liu, Xiaochun Wei, Xueqin Rong, Pengcui Li\",\"doi\":\"10.1111/jcmm.70135\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Exogenous administration of the histone deacetylation 4 (HDAC4) protein can effectively delay osteoarthritis (OA) progression. However, HDAC4 is unstable and easily degrades into N-terminal (HDAC4-NT) and C-terminal fragments, and the HDAC4-NT can exert biological effects, but little is known about its role in chondrocytes and cartilage. Thus, the roles of HDAC4-NT fragments (1-289aa, 1-326aa and 1-669aa) in chondrocytes and cartilage were evaluated via real-time cell analysis (RTCA), safranin O staining, Sirius Red staining and nanoindentation. Molecular mechanisms were profiled via whole-transcriptome sequencing (RNA-seq) and verified in vitro and in vivo by a live cell real-time monitoring system, flow cytometry, western blotting and immunohistochemistry. The results showed that 1-669aa induced chondrocyte death and cartilage injury significantly, and the differentially expressed genes (DEGs) were enriched mainly in the apoptotic term and p53 signalling pathway. The validation experiments showed that 1-669aa induced chondrocyte apoptosis via the endoplasmic reticulum stress (ERS) pathway, and up-regulated p53 expression was essential for this process. Thus, we concluded that the HDAC4-NT fragment 1-669aa induces chondrocyte apoptosis via the p53-dependent ERS pathway, suggesting that in addition to overexpressing HDAC4, preventing it from degradation may be a new strategy for the treatment of OA.</p>\",\"PeriodicalId\":101321,\"journal\":{\"name\":\"JOURNAL OF CELLULAR AND MOLECULAR MEDICINE\",\"volume\":\"28 20\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11491302/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JOURNAL OF CELLULAR AND MOLECULAR MEDICINE\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/jcmm.70135\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JOURNAL OF CELLULAR AND MOLECULAR MEDICINE","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jcmm.70135","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The N-terminal fragment of histone deacetylase 4 (1-669aa) promotes chondrocyte apoptosis via the p53-dependent endoplasmic reticulum stress pathway
Exogenous administration of the histone deacetylation 4 (HDAC4) protein can effectively delay osteoarthritis (OA) progression. However, HDAC4 is unstable and easily degrades into N-terminal (HDAC4-NT) and C-terminal fragments, and the HDAC4-NT can exert biological effects, but little is known about its role in chondrocytes and cartilage. Thus, the roles of HDAC4-NT fragments (1-289aa, 1-326aa and 1-669aa) in chondrocytes and cartilage were evaluated via real-time cell analysis (RTCA), safranin O staining, Sirius Red staining and nanoindentation. Molecular mechanisms were profiled via whole-transcriptome sequencing (RNA-seq) and verified in vitro and in vivo by a live cell real-time monitoring system, flow cytometry, western blotting and immunohistochemistry. The results showed that 1-669aa induced chondrocyte death and cartilage injury significantly, and the differentially expressed genes (DEGs) were enriched mainly in the apoptotic term and p53 signalling pathway. The validation experiments showed that 1-669aa induced chondrocyte apoptosis via the endoplasmic reticulum stress (ERS) pathway, and up-regulated p53 expression was essential for this process. Thus, we concluded that the HDAC4-NT fragment 1-669aa induces chondrocyte apoptosis via the p53-dependent ERS pathway, suggesting that in addition to overexpressing HDAC4, preventing it from degradation may be a new strategy for the treatment of OA.
期刊介绍:
The Journal of Cellular and Molecular Medicine serves as a bridge between physiology and cellular medicine, as well as molecular biology and molecular therapeutics. With a 20-year history, the journal adopts an interdisciplinary approach to showcase innovative discoveries.
It publishes research aimed at advancing the collective understanding of the cellular and molecular mechanisms underlying diseases. The journal emphasizes translational studies that translate this knowledge into therapeutic strategies. Being fully open access, the journal is accessible to all readers.