持续肾脏替代疗法提取胺碘酮:体内外研究结果。

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Danielle J Green, Autumn M McKnite, J Porter Hunt, Carina E Imburgia, Walter Kelley, Kevin M Watt
{"title":"持续肾脏替代疗法提取胺碘酮:体内外研究结果。","authors":"Danielle J Green, Autumn M McKnite, J Porter Hunt, Carina E Imburgia, Walter Kelley, Kevin M Watt","doi":"10.1007/s10047-024-01475-7","DOIUrl":null,"url":null,"abstract":"<p><p>Continuous renal replacement therapy (CRRT) is a lifesaving therapy for critically ill patients with acute renal failure. Some patients supported with CRRT suffer from cardiac arrhythmias, which are often treated with amiodarone. While amiodarone is a very effective antiarrhythmic, it has a relatively narrow therapeutic window and a long half-life, making it challenging to dose safely. This is especially true in patients supported with CRRT, where drug pharmacokinetics are likely altered. This ex vivo study measured the extent of amiodarone extraction by the CRRT circuit. Amiodarone was administered to a closed-loop CRRT circuit. Drug was dosed to achieve therapeutic concentrations. Circuits were primed with a human blood-plasma mixture and maintained at physiologic temperature and pH. Serial blood samples were collected over time and drug concentrations were quantified. Amiodarone was heavily extracted by the ex vivo CRRT circuit with only 23% amiodarone remaining in the plasma at 6 h. The relative concentration was significantly greater in the controls than in the CRRT circuits within 2 h (n = 3; p = 0.0059). Amiodarone is heavily adsorbed by CRRT circuit components, suggesting that clinical dosing adjustments are likely required to achieve therapeutic targets.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Amiodarone extraction by continuous renal replacement therapy: results from an ex vivo study.\",\"authors\":\"Danielle J Green, Autumn M McKnite, J Porter Hunt, Carina E Imburgia, Walter Kelley, Kevin M Watt\",\"doi\":\"10.1007/s10047-024-01475-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Continuous renal replacement therapy (CRRT) is a lifesaving therapy for critically ill patients with acute renal failure. Some patients supported with CRRT suffer from cardiac arrhythmias, which are often treated with amiodarone. While amiodarone is a very effective antiarrhythmic, it has a relatively narrow therapeutic window and a long half-life, making it challenging to dose safely. This is especially true in patients supported with CRRT, where drug pharmacokinetics are likely altered. This ex vivo study measured the extent of amiodarone extraction by the CRRT circuit. Amiodarone was administered to a closed-loop CRRT circuit. Drug was dosed to achieve therapeutic concentrations. Circuits were primed with a human blood-plasma mixture and maintained at physiologic temperature and pH. Serial blood samples were collected over time and drug concentrations were quantified. Amiodarone was heavily extracted by the ex vivo CRRT circuit with only 23% amiodarone remaining in the plasma at 6 h. The relative concentration was significantly greater in the controls than in the CRRT circuits within 2 h (n = 3; p = 0.0059). Amiodarone is heavily adsorbed by CRRT circuit components, suggesting that clinical dosing adjustments are likely required to achieve therapeutic targets.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s10047-024-01475-7\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10047-024-01475-7","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

持续肾脏替代疗法(CRRT)是急性肾衰竭重症患者的救命疗法。一些接受 CRRT 治疗的患者会出现心律失常,通常需要使用胺碘酮进行治疗。虽然胺碘酮是一种非常有效的抗心律失常药物,但它的治疗窗口期相对较窄,半衰期较长,因此很难安全用药。对于接受 CRRT 治疗的患者来说尤其如此,因为药物的药代动力学很可能会发生改变。这项体内外研究测量了 CRRT 电路提取胺碘酮的程度。在闭环 CRRT 电路中注入胺碘酮。药物剂量达到治疗浓度。用人血-血浆混合物对回路进行预处理,并将其维持在生理温度和 pH 值。在一段时间内收集连续的血液样本,并对药物浓度进行量化。在 2 小时内,对照组的相对浓度明显高于 CRRT 循环(n = 3;p = 0.0059)。胺碘酮被 CRRT 回路元件大量吸附,这表明临床上可能需要调整剂量才能达到治疗目标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Amiodarone extraction by continuous renal replacement therapy: results from an ex vivo study.

Continuous renal replacement therapy (CRRT) is a lifesaving therapy for critically ill patients with acute renal failure. Some patients supported with CRRT suffer from cardiac arrhythmias, which are often treated with amiodarone. While amiodarone is a very effective antiarrhythmic, it has a relatively narrow therapeutic window and a long half-life, making it challenging to dose safely. This is especially true in patients supported with CRRT, where drug pharmacokinetics are likely altered. This ex vivo study measured the extent of amiodarone extraction by the CRRT circuit. Amiodarone was administered to a closed-loop CRRT circuit. Drug was dosed to achieve therapeutic concentrations. Circuits were primed with a human blood-plasma mixture and maintained at physiologic temperature and pH. Serial blood samples were collected over time and drug concentrations were quantified. Amiodarone was heavily extracted by the ex vivo CRRT circuit with only 23% amiodarone remaining in the plasma at 6 h. The relative concentration was significantly greater in the controls than in the CRRT circuits within 2 h (n = 3; p = 0.0059). Amiodarone is heavily adsorbed by CRRT circuit components, suggesting that clinical dosing adjustments are likely required to achieve therapeutic targets.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信