通过阳极氧化中间层提高 AZ31 合金上羟基磷灰石涂层的耐腐蚀性和附着力。

IF 3.1 4区 医学 Q2 BIOPHYSICS
Anh Tuyet Thi Ngo, Linh Do Chi, Hanh Hong Pham, San Thy Pham, Luong Van Duong
{"title":"通过阳极氧化中间层提高 AZ31 合金上羟基磷灰石涂层的耐腐蚀性和附着力。","authors":"Anh Tuyet Thi Ngo, Linh Do Chi, Hanh Hong Pham, San Thy Pham, Luong Van Duong","doi":"10.1177/22808000241271693","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>The primary objective of this study is using an anodizing intermediate layer to improve corrosion resistance and adhesion of hydroxyapatite coated AZ31 alloy for applications in biodegradable implants.</p><p><strong>Methods: </strong>An anodizing intermediate layer was formed on the surface of AZ31 substrate at various anodizing voltage of 10, 20, 30, and 40 V respectively by anodizing process. HAp was grow on the surface of AZ31 substrate at 90°C and pH solution of 7.5 by chemical solution treatment method for 2 h. The coated samples were evaluated their corrosion behavior by Electrochemical measurements and biodegradation behavior by immersion test in Hank's balanced salts solution (HBSS) for 28 days via amount of Mg<sup>2+</sup> ion released. While, their adhesion strength were evaluated by pull-off method. The amount of Mg<sup>2+</sup> ions released of the samples was quantified by the Inductively coupled plasma mass spectrometry.</p><p><strong>Results: </strong>An anodizing intermediate layer was successfully synthesized at various voltages by anodizing process and HAp coatings were prepared by chemical solution treatment method. The corrosion rate of hydroxyapatite coated AZ31 alloy with an anodizing intermediate layer decreased 4.4 times, while adhesion strength increased about two times compared to the HAp coated AZ31 specimen without an anodizing layer and achieved ~14.70, ~6.92 MPa, respectively. After immersion test in HBSS, the adhesion strength of HAp/AZ31-HBSS-specimen decrease to 45% because of large corroded areas with depth holes of hundreds of micrometers. The slighter decrease in adhesion strength of HAp/30V/AZ31-HBSS-specimen to 22% is due to the contribution of the anodizing intermediate layer.</p><p><strong>Conclusion: </strong>HAp coated AZ31 alloy specimen with the existence of a porous structure with an elliptical shape, uniform and high density of MgO on the surface at anodizing voltage of 30 V resulted in a significant increase in corrosion resistance and the adhesion strength of HAp coatings.</p>","PeriodicalId":14985,"journal":{"name":"Journal of Applied Biomaterials & Functional Materials","volume":"22 ","pages":"22808000241271693"},"PeriodicalIF":3.1000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improvement of corrosion resistance and adhesion of hydroxyapatite coating on AZ31 alloy by an anodizing intermediate layer.\",\"authors\":\"Anh Tuyet Thi Ngo, Linh Do Chi, Hanh Hong Pham, San Thy Pham, Luong Van Duong\",\"doi\":\"10.1177/22808000241271693\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objectives: </strong>The primary objective of this study is using an anodizing intermediate layer to improve corrosion resistance and adhesion of hydroxyapatite coated AZ31 alloy for applications in biodegradable implants.</p><p><strong>Methods: </strong>An anodizing intermediate layer was formed on the surface of AZ31 substrate at various anodizing voltage of 10, 20, 30, and 40 V respectively by anodizing process. HAp was grow on the surface of AZ31 substrate at 90°C and pH solution of 7.5 by chemical solution treatment method for 2 h. The coated samples were evaluated their corrosion behavior by Electrochemical measurements and biodegradation behavior by immersion test in Hank's balanced salts solution (HBSS) for 28 days via amount of Mg<sup>2+</sup> ion released. While, their adhesion strength were evaluated by pull-off method. The amount of Mg<sup>2+</sup> ions released of the samples was quantified by the Inductively coupled plasma mass spectrometry.</p><p><strong>Results: </strong>An anodizing intermediate layer was successfully synthesized at various voltages by anodizing process and HAp coatings were prepared by chemical solution treatment method. The corrosion rate of hydroxyapatite coated AZ31 alloy with an anodizing intermediate layer decreased 4.4 times, while adhesion strength increased about two times compared to the HAp coated AZ31 specimen without an anodizing layer and achieved ~14.70, ~6.92 MPa, respectively. After immersion test in HBSS, the adhesion strength of HAp/AZ31-HBSS-specimen decrease to 45% because of large corroded areas with depth holes of hundreds of micrometers. The slighter decrease in adhesion strength of HAp/30V/AZ31-HBSS-specimen to 22% is due to the contribution of the anodizing intermediate layer.</p><p><strong>Conclusion: </strong>HAp coated AZ31 alloy specimen with the existence of a porous structure with an elliptical shape, uniform and high density of MgO on the surface at anodizing voltage of 30 V resulted in a significant increase in corrosion resistance and the adhesion strength of HAp coatings.</p>\",\"PeriodicalId\":14985,\"journal\":{\"name\":\"Journal of Applied Biomaterials & Functional Materials\",\"volume\":\"22 \",\"pages\":\"22808000241271693\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Biomaterials & Functional Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/22808000241271693\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Biomaterials & Functional Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/22808000241271693","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

目的:本研究的主要目的是利用阳极氧化中间层提高羟基磷灰石涂层 AZ31 合金的耐腐蚀性和附着力,以应用于可生物降解植入物:本研究的主要目的是利用阳极氧化中间层提高羟基磷灰石涂层 AZ31 合金的耐腐蚀性和附着力,以应用于生物可降解植入物:方法:通过阳极氧化工艺,在不同的阳极氧化电压(分别为 10、20、30 和 40 V)下,在 AZ31 基体表面形成阳极氧化中间层。在 90°C 和 pH 值为 7.5 的溶液中用化学溶液处理法在 AZ31 基底表面生长 2 小时后,用电化学测量法评估涂层样品的腐蚀行为,并通过 Mg2+ 离子释放量评估生物降解行为。同时,它们的粘附强度也通过拉离法进行了评估。通过电感耦合等离子体质谱法对样品释放的 Mg2+ 离子量进行了量化:结果:通过阳极氧化工艺在不同电压下成功合成了阳极氧化中间层,并采用化学溶液处理法制备了羟基磷灰石涂层。与不带阳极氧化层的 AZ31 试样相比,带阳极氧化中间层的羟基磷灰石涂层 AZ31 合金的腐蚀速率降低了 4.4 倍,而附着强度提高了约 2 倍,分别达到 ~14.70 和 ~6.92 MPa。在 HBSS 中浸泡测试后,HAp/AZ31-HBSS 试样的附着强度下降到 45%,原因是腐蚀区域较大,孔洞深度达数百微米。HAp/30V/AZ31-HBSS-试样的附着强度降低到 22%,这是由于阳极氧化中间层的作用:结论:HAp 涂层的 AZ31 合金试样具有椭圆形多孔结构,表面氧化镁密度均匀且高,在阳极氧化电压为 30 V 时,HAp 涂层的耐腐蚀性和附着强度显著提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improvement of corrosion resistance and adhesion of hydroxyapatite coating on AZ31 alloy by an anodizing intermediate layer.

Objectives: The primary objective of this study is using an anodizing intermediate layer to improve corrosion resistance and adhesion of hydroxyapatite coated AZ31 alloy for applications in biodegradable implants.

Methods: An anodizing intermediate layer was formed on the surface of AZ31 substrate at various anodizing voltage of 10, 20, 30, and 40 V respectively by anodizing process. HAp was grow on the surface of AZ31 substrate at 90°C and pH solution of 7.5 by chemical solution treatment method for 2 h. The coated samples were evaluated their corrosion behavior by Electrochemical measurements and biodegradation behavior by immersion test in Hank's balanced salts solution (HBSS) for 28 days via amount of Mg2+ ion released. While, their adhesion strength were evaluated by pull-off method. The amount of Mg2+ ions released of the samples was quantified by the Inductively coupled plasma mass spectrometry.

Results: An anodizing intermediate layer was successfully synthesized at various voltages by anodizing process and HAp coatings were prepared by chemical solution treatment method. The corrosion rate of hydroxyapatite coated AZ31 alloy with an anodizing intermediate layer decreased 4.4 times, while adhesion strength increased about two times compared to the HAp coated AZ31 specimen without an anodizing layer and achieved ~14.70, ~6.92 MPa, respectively. After immersion test in HBSS, the adhesion strength of HAp/AZ31-HBSS-specimen decrease to 45% because of large corroded areas with depth holes of hundreds of micrometers. The slighter decrease in adhesion strength of HAp/30V/AZ31-HBSS-specimen to 22% is due to the contribution of the anodizing intermediate layer.

Conclusion: HAp coated AZ31 alloy specimen with the existence of a porous structure with an elliptical shape, uniform and high density of MgO on the surface at anodizing voltage of 30 V resulted in a significant increase in corrosion resistance and the adhesion strength of HAp coatings.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Applied Biomaterials & Functional Materials
Journal of Applied Biomaterials & Functional Materials BIOPHYSICS-ENGINEERING, BIOMEDICAL
CiteScore
4.40
自引率
4.00%
发文量
36
审稿时长
>12 weeks
期刊介绍: The Journal of Applied Biomaterials & Functional Materials (JABFM) is an open access, peer-reviewed, international journal considering the publication of original contributions, reviews and editorials dealing with clinical and laboratory investigations in the fast growing field of biomaterial sciences and functional materials. The areas covered by the journal will include: • Biomaterials / Materials for biomedical applications • Functional materials • Hybrid and composite materials • Soft materials • Hydrogels • Nanomaterials • Gene delivery • Nonodevices • Metamaterials • Active coatings • Surface functionalization • Tissue engineering • Cell delivery/cell encapsulation systems • 3D printing materials • Material characterization • Biomechanics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信