Youngjae Jeong, Lorenzo Deveza, Laura Ortinau, Kevin Lei, John R Dawson, Dongsu Park
{"title":"鉴定需要 LRP1 进行骨修复的 LRP1+CD13+ 人骨膜干细胞。","authors":"Youngjae Jeong, Lorenzo Deveza, Laura Ortinau, Kevin Lei, John R Dawson, Dongsu Park","doi":"10.1172/jci.insight.173831","DOIUrl":null,"url":null,"abstract":"<p><p>Human periosteal skeletal stem cells (P-SSCs) are critical for cortical bone maintenance and repair. However, their in vivo identity, molecular characteristics, and specific markers remain unknown. Here, single-cell sequencing revealed human periosteum contains SSC clusters expressing known SSC markers, podoplanin (PDPN) and PDGFRA. Notably, human P-SSCs, but not bone marrow SSCs, selectively expressed identified markers low density lipoprotein receptor-related protein 1 (LRP1) and CD13. These LRP1+CD13+ human P-SSCs were perivascular cells with high osteochondrogenic but minimal adipogenic potential. Upon transplantation into bone injuries in mice, they preserved self-renewal capability in vivo. Single-cell analysis of mouse periosteum further supported the preferential expression of LRP1 and CD13 in Prx1+ P-SSCs. When Lrp1 was conditionally deleted in Prx1 lineage cells, it led to severe bone deformity, short stature, and periosteal defects. By contrast, local treatment with an LRP1 agonist at the injury sites induced early P-SSC proliferation and bone healing. Thus, human and mouse periosteum contains unique osteochondrogenic stem cell subsets, and these P-SSCs express specific markers, LRP1 and CD13, with a regulatory mechanism through LRP1 that enhances P-SSC function and bone repair.</p>","PeriodicalId":14722,"journal":{"name":"JCI insight","volume":" ","pages":""},"PeriodicalIF":6.3000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identification of LRP1+CD13+ human periosteal stem cells that require LRP1 for bone repair.\",\"authors\":\"Youngjae Jeong, Lorenzo Deveza, Laura Ortinau, Kevin Lei, John R Dawson, Dongsu Park\",\"doi\":\"10.1172/jci.insight.173831\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Human periosteal skeletal stem cells (P-SSCs) are critical for cortical bone maintenance and repair. However, their in vivo identity, molecular characteristics, and specific markers remain unknown. Here, single-cell sequencing revealed human periosteum contains SSC clusters expressing known SSC markers, podoplanin (PDPN) and PDGFRA. Notably, human P-SSCs, but not bone marrow SSCs, selectively expressed identified markers low density lipoprotein receptor-related protein 1 (LRP1) and CD13. These LRP1+CD13+ human P-SSCs were perivascular cells with high osteochondrogenic but minimal adipogenic potential. Upon transplantation into bone injuries in mice, they preserved self-renewal capability in vivo. Single-cell analysis of mouse periosteum further supported the preferential expression of LRP1 and CD13 in Prx1+ P-SSCs. When Lrp1 was conditionally deleted in Prx1 lineage cells, it led to severe bone deformity, short stature, and periosteal defects. By contrast, local treatment with an LRP1 agonist at the injury sites induced early P-SSC proliferation and bone healing. Thus, human and mouse periosteum contains unique osteochondrogenic stem cell subsets, and these P-SSCs express specific markers, LRP1 and CD13, with a regulatory mechanism through LRP1 that enhances P-SSC function and bone repair.</p>\",\"PeriodicalId\":14722,\"journal\":{\"name\":\"JCI insight\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2024-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JCI insight\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1172/jci.insight.173831\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JCI insight","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1172/jci.insight.173831","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
Identification of LRP1+CD13+ human periosteal stem cells that require LRP1 for bone repair.
Human periosteal skeletal stem cells (P-SSCs) are critical for cortical bone maintenance and repair. However, their in vivo identity, molecular characteristics, and specific markers remain unknown. Here, single-cell sequencing revealed human periosteum contains SSC clusters expressing known SSC markers, podoplanin (PDPN) and PDGFRA. Notably, human P-SSCs, but not bone marrow SSCs, selectively expressed identified markers low density lipoprotein receptor-related protein 1 (LRP1) and CD13. These LRP1+CD13+ human P-SSCs were perivascular cells with high osteochondrogenic but minimal adipogenic potential. Upon transplantation into bone injuries in mice, they preserved self-renewal capability in vivo. Single-cell analysis of mouse periosteum further supported the preferential expression of LRP1 and CD13 in Prx1+ P-SSCs. When Lrp1 was conditionally deleted in Prx1 lineage cells, it led to severe bone deformity, short stature, and periosteal defects. By contrast, local treatment with an LRP1 agonist at the injury sites induced early P-SSC proliferation and bone healing. Thus, human and mouse periosteum contains unique osteochondrogenic stem cell subsets, and these P-SSCs express specific markers, LRP1 and CD13, with a regulatory mechanism through LRP1 that enhances P-SSC function and bone repair.
期刊介绍:
JCI Insight is a Gold Open Access journal with a 2022 Impact Factor of 8.0. It publishes high-quality studies in various biomedical specialties, such as autoimmunity, gastroenterology, immunology, metabolism, nephrology, neuroscience, oncology, pulmonology, and vascular biology. The journal focuses on clinically relevant basic and translational research that contributes to the understanding of disease biology and treatment. JCI Insight is self-published by the American Society for Clinical Investigation (ASCI), a nonprofit honor organization of physician-scientists founded in 1908, and it helps fulfill the ASCI's mission to advance medical science through the publication of clinically relevant research reports.