{"title":"磁性和可见光诱导的新型绿色合成磁性 Co3O4 光催化剂,通过葵花籽粕提取物吸附辅助光催化降解去除阴离子和阳离子染料。","authors":"Aleyna Akıllı, Bircan Haspulat Taymaz, Ayşenur Özler, Halime Ak, Ahmet Hancı, Handan Kamış","doi":"10.1080/15226514.2024.2416998","DOIUrl":null,"url":null,"abstract":"<p><p>This study was aimed at the preparation of m-Co<sub>3</sub>O<sub>4</sub> NPs (magnetic Co<sub>3</sub>O<sub>4</sub> nanoparticles) from sunflower seed meal (SFSM) which is the waste of sunflower seed oil factories, and their application as a photocatalyst for the adsorption assistant photocatalysis degradation of methylene blue (MB), and direct yellow-50 (DY-50) under the visible irradiations. Also, the photocatalytic performance of m-Co<sub>3</sub>O<sub>4</sub> NPs was evaluated in synthetic wastewater. The produced m-Co<sub>3</sub>O<sub>4</sub> NPs were ferromagnetic with a saturation magnetization value of 4.3 emu g<sup>-1</sup> and the degradation of cationic MB and anionic DY-50 dyes by 100% and 93% in 20 min and 35 min, respectively, by adsorption-assisted photocatalytic process under visible light was achieved. The reactions were found to be pseudo-second-order equation for the adsorption-assisted photocatalytic process for both dyes. The photocatalytic activity of m-Co<sub>3</sub>O<sub>4</sub> NPs decreased slightly even after five repeated cycles. These results show that the m-Co<sub>3</sub>O<sub>4</sub> NPs can be used successfully in dye treatment in wastewater with their adsorption-assisted photocatalytic properties, activation by visible light, magnetic separability, and low-cost production.</p>","PeriodicalId":14235,"journal":{"name":"International Journal of Phytoremediation","volume":" ","pages":"1-14"},"PeriodicalIF":3.4000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Magnetic and visible light-induced novel green synthesized magnetic Co<sub>3</sub>O<sub>4</sub> photocatalysts via sunflower seed meal extract for anionic and cationic dye removal by adsorption assisted photocatalytic degradation.\",\"authors\":\"Aleyna Akıllı, Bircan Haspulat Taymaz, Ayşenur Özler, Halime Ak, Ahmet Hancı, Handan Kamış\",\"doi\":\"10.1080/15226514.2024.2416998\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study was aimed at the preparation of m-Co<sub>3</sub>O<sub>4</sub> NPs (magnetic Co<sub>3</sub>O<sub>4</sub> nanoparticles) from sunflower seed meal (SFSM) which is the waste of sunflower seed oil factories, and their application as a photocatalyst for the adsorption assistant photocatalysis degradation of methylene blue (MB), and direct yellow-50 (DY-50) under the visible irradiations. Also, the photocatalytic performance of m-Co<sub>3</sub>O<sub>4</sub> NPs was evaluated in synthetic wastewater. The produced m-Co<sub>3</sub>O<sub>4</sub> NPs were ferromagnetic with a saturation magnetization value of 4.3 emu g<sup>-1</sup> and the degradation of cationic MB and anionic DY-50 dyes by 100% and 93% in 20 min and 35 min, respectively, by adsorption-assisted photocatalytic process under visible light was achieved. The reactions were found to be pseudo-second-order equation for the adsorption-assisted photocatalytic process for both dyes. The photocatalytic activity of m-Co<sub>3</sub>O<sub>4</sub> NPs decreased slightly even after five repeated cycles. These results show that the m-Co<sub>3</sub>O<sub>4</sub> NPs can be used successfully in dye treatment in wastewater with their adsorption-assisted photocatalytic properties, activation by visible light, magnetic separability, and low-cost production.</p>\",\"PeriodicalId\":14235,\"journal\":{\"name\":\"International Journal of Phytoremediation\",\"volume\":\" \",\"pages\":\"1-14\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Phytoremediation\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1080/15226514.2024.2416998\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Phytoremediation","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/15226514.2024.2416998","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Magnetic and visible light-induced novel green synthesized magnetic Co3O4 photocatalysts via sunflower seed meal extract for anionic and cationic dye removal by adsorption assisted photocatalytic degradation.
This study was aimed at the preparation of m-Co3O4 NPs (magnetic Co3O4 nanoparticles) from sunflower seed meal (SFSM) which is the waste of sunflower seed oil factories, and their application as a photocatalyst for the adsorption assistant photocatalysis degradation of methylene blue (MB), and direct yellow-50 (DY-50) under the visible irradiations. Also, the photocatalytic performance of m-Co3O4 NPs was evaluated in synthetic wastewater. The produced m-Co3O4 NPs were ferromagnetic with a saturation magnetization value of 4.3 emu g-1 and the degradation of cationic MB and anionic DY-50 dyes by 100% and 93% in 20 min and 35 min, respectively, by adsorption-assisted photocatalytic process under visible light was achieved. The reactions were found to be pseudo-second-order equation for the adsorption-assisted photocatalytic process for both dyes. The photocatalytic activity of m-Co3O4 NPs decreased slightly even after five repeated cycles. These results show that the m-Co3O4 NPs can be used successfully in dye treatment in wastewater with their adsorption-assisted photocatalytic properties, activation by visible light, magnetic separability, and low-cost production.
期刊介绍:
The International Journal of Phytoremediation (IJP) is the first journal devoted to the publication of laboratory and field research describing the use of plant systems to solve environmental problems by enabling the remediation of soil, water, and air quality and by restoring ecosystem services in managed landscapes. Traditional phytoremediation has largely focused on soil and groundwater clean-up of hazardous contaminants. Phytotechnology expands this umbrella to include many of the natural resource management challenges we face in cities, on farms, and other landscapes more integrated with daily public activities. Wetlands that treat wastewater, rain gardens that treat stormwater, poplar tree plantings that contain pollutants, urban tree canopies that treat air pollution, and specialized plants that treat decommissioned mine sites are just a few examples of phytotechnologies.