Jiapeng Li, Xiaoqian Yang, Mengxin Chen, Lei Zhang
{"title":"增强新型镉动员细菌对镉污染土壤的植物修复和微生态学的影响。","authors":"Jiapeng Li, Xiaoqian Yang, Mengxin Chen, Lei Zhang","doi":"10.1080/15226514.2024.2414911","DOIUrl":null,"url":null,"abstract":"<p><p>The efficacy of phytoextraction for remediating heavy-metal contaminated soil depends on the bioavailability of the heavy metals and plant growth. In this study, we employed a synergistic system comprising water-soluble chitosan and the novel Cd mobilization bacteria, <i>Serratia sp</i>. K6 (hereafter K6), to enhance cadmium (Cd) extraction by Lolium perenne L. (ryegrass). The application of chitosan and K6 resulted in an increase in the biomass of ryegrass by 11.81% and Cd accumulation by 73.99% and effective-state Cd by 43.69% and pH decreased by 4.67%, compared to the control group. Microbiome and metabolomics analyses revealed significant alterations in the inter-root microbial ommunity, with rhizobacteria such as <i>Sphingomonas</i>, <i>Nocardioides</i>, and <i>Bacillus</i> likely contributing to enhanced plant growth and Cd accumulation in response to chitosan and K6 addition. Additionally, the contents of various organic acids, amino acids, lipids, and other metabolites exhibited significant changes under different additive treatments, suggesting that ryegrass can regulate its own metabolites to resist Cd stress. This study provides valuable insights into the effects of additives on phytoextraction efficiency and the soil bacterial community, offering a promising approach for phytoremediation of Cd-contaminated soils.</p>","PeriodicalId":14235,"journal":{"name":"International Journal of Phytoremediation","volume":" ","pages":"1-11"},"PeriodicalIF":3.4000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing the effect of novel cd mobilization bacteria on phytoremediation and microecology of cadmium contaminated soil.\",\"authors\":\"Jiapeng Li, Xiaoqian Yang, Mengxin Chen, Lei Zhang\",\"doi\":\"10.1080/15226514.2024.2414911\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The efficacy of phytoextraction for remediating heavy-metal contaminated soil depends on the bioavailability of the heavy metals and plant growth. In this study, we employed a synergistic system comprising water-soluble chitosan and the novel Cd mobilization bacteria, <i>Serratia sp</i>. K6 (hereafter K6), to enhance cadmium (Cd) extraction by Lolium perenne L. (ryegrass). The application of chitosan and K6 resulted in an increase in the biomass of ryegrass by 11.81% and Cd accumulation by 73.99% and effective-state Cd by 43.69% and pH decreased by 4.67%, compared to the control group. Microbiome and metabolomics analyses revealed significant alterations in the inter-root microbial ommunity, with rhizobacteria such as <i>Sphingomonas</i>, <i>Nocardioides</i>, and <i>Bacillus</i> likely contributing to enhanced plant growth and Cd accumulation in response to chitosan and K6 addition. Additionally, the contents of various organic acids, amino acids, lipids, and other metabolites exhibited significant changes under different additive treatments, suggesting that ryegrass can regulate its own metabolites to resist Cd stress. This study provides valuable insights into the effects of additives on phytoextraction efficiency and the soil bacterial community, offering a promising approach for phytoremediation of Cd-contaminated soils.</p>\",\"PeriodicalId\":14235,\"journal\":{\"name\":\"International Journal of Phytoremediation\",\"volume\":\" \",\"pages\":\"1-11\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Phytoremediation\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1080/15226514.2024.2414911\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Phytoremediation","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/15226514.2024.2414911","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Enhancing the effect of novel cd mobilization bacteria on phytoremediation and microecology of cadmium contaminated soil.
The efficacy of phytoextraction for remediating heavy-metal contaminated soil depends on the bioavailability of the heavy metals and plant growth. In this study, we employed a synergistic system comprising water-soluble chitosan and the novel Cd mobilization bacteria, Serratia sp. K6 (hereafter K6), to enhance cadmium (Cd) extraction by Lolium perenne L. (ryegrass). The application of chitosan and K6 resulted in an increase in the biomass of ryegrass by 11.81% and Cd accumulation by 73.99% and effective-state Cd by 43.69% and pH decreased by 4.67%, compared to the control group. Microbiome and metabolomics analyses revealed significant alterations in the inter-root microbial ommunity, with rhizobacteria such as Sphingomonas, Nocardioides, and Bacillus likely contributing to enhanced plant growth and Cd accumulation in response to chitosan and K6 addition. Additionally, the contents of various organic acids, amino acids, lipids, and other metabolites exhibited significant changes under different additive treatments, suggesting that ryegrass can regulate its own metabolites to resist Cd stress. This study provides valuable insights into the effects of additives on phytoextraction efficiency and the soil bacterial community, offering a promising approach for phytoremediation of Cd-contaminated soils.
期刊介绍:
The International Journal of Phytoremediation (IJP) is the first journal devoted to the publication of laboratory and field research describing the use of plant systems to solve environmental problems by enabling the remediation of soil, water, and air quality and by restoring ecosystem services in managed landscapes. Traditional phytoremediation has largely focused on soil and groundwater clean-up of hazardous contaminants. Phytotechnology expands this umbrella to include many of the natural resource management challenges we face in cities, on farms, and other landscapes more integrated with daily public activities. Wetlands that treat wastewater, rain gardens that treat stormwater, poplar tree plantings that contain pollutants, urban tree canopies that treat air pollution, and specialized plants that treat decommissioned mine sites are just a few examples of phytotechnologies.