{"title":"接种Paenibacillus favisporus CHP14对白菜(Brassica chinensis L.)在外源亚硒酸盐处理下硒积累和耐受性的影响","authors":"Qi Li, Shoubiao Zhou","doi":"10.1080/15226514.2024.2414212","DOIUrl":null,"url":null,"abstract":"<p><p>The effects of <i>Paenibacillus favisporus</i> CHP14 inoculation on selenium (Se) accumulation and Se tolerance of Pakchoi were studied by a pot experiment conducted in greenhouse. The results revealed that the growth traits such as plant height, root length, and biomass were significantly elevated during CHP14 treatment at 0 ∼ 8.0 mg·kg<sup>-1</sup> Se(IV) levels. CHP14-inoculated plants accumulated more Se in root and shoot, which were 24.1%∼57.3% and 7.5%∼50.9% higher than those of non-inoculated plants. The contents of leaf nitrogen (N), phosphorus (P), magnesium (Mg), and iron (Fe), as well as the ratio of indoleacetic acid and abscisic acid contents (IAA/ABA) were increased by CHP14 inoculation, and positively associated with photosynthetic pigment contents (<i>p</i> < 0.05). At ≥ 4.0 mg·kg<sup>-1</sup> Se(IV) levels, superoxide dismutase, peroxidase, and glutathione peroxidase activities of Pakchoi roots were increased with CHP14 inoculation, by 9.9%∼17.1%, 28.4%∼40.7%, and 7.4%∼15.3%, respectively. Moreover, CHP14 inoculation enhanced ascorbate-glutathione (AsA-GSH) metabolism in roots by upregulating the related enzymes activities and antioxidant contents under excess Se(IV) stress. These findings suggest that CHP14 is beneficial to improve plant growth and enhance Se(IV) resistance of Pakchoi, and can be exploited as potential inoculants for phytoremediation process in Se contaminated soil.</p>","PeriodicalId":14235,"journal":{"name":"International Journal of Phytoremediation","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of <i>Paenibacillus favisporus</i> CHP14 inoculation on selenium accumulation and tolerance of Pakchoi (<i>Brassica chinensis</i> L.) under exogenous selenite treatments.\",\"authors\":\"Qi Li, Shoubiao Zhou\",\"doi\":\"10.1080/15226514.2024.2414212\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The effects of <i>Paenibacillus favisporus</i> CHP14 inoculation on selenium (Se) accumulation and Se tolerance of Pakchoi were studied by a pot experiment conducted in greenhouse. The results revealed that the growth traits such as plant height, root length, and biomass were significantly elevated during CHP14 treatment at 0 ∼ 8.0 mg·kg<sup>-1</sup> Se(IV) levels. CHP14-inoculated plants accumulated more Se in root and shoot, which were 24.1%∼57.3% and 7.5%∼50.9% higher than those of non-inoculated plants. The contents of leaf nitrogen (N), phosphorus (P), magnesium (Mg), and iron (Fe), as well as the ratio of indoleacetic acid and abscisic acid contents (IAA/ABA) were increased by CHP14 inoculation, and positively associated with photosynthetic pigment contents (<i>p</i> < 0.05). At ≥ 4.0 mg·kg<sup>-1</sup> Se(IV) levels, superoxide dismutase, peroxidase, and glutathione peroxidase activities of Pakchoi roots were increased with CHP14 inoculation, by 9.9%∼17.1%, 28.4%∼40.7%, and 7.4%∼15.3%, respectively. Moreover, CHP14 inoculation enhanced ascorbate-glutathione (AsA-GSH) metabolism in roots by upregulating the related enzymes activities and antioxidant contents under excess Se(IV) stress. These findings suggest that CHP14 is beneficial to improve plant growth and enhance Se(IV) resistance of Pakchoi, and can be exploited as potential inoculants for phytoremediation process in Se contaminated soil.</p>\",\"PeriodicalId\":14235,\"journal\":{\"name\":\"International Journal of Phytoremediation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Phytoremediation\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1080/15226514.2024.2414212\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Phytoremediation","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/15226514.2024.2414212","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Effect of Paenibacillus favisporus CHP14 inoculation on selenium accumulation and tolerance of Pakchoi (Brassica chinensis L.) under exogenous selenite treatments.
The effects of Paenibacillus favisporus CHP14 inoculation on selenium (Se) accumulation and Se tolerance of Pakchoi were studied by a pot experiment conducted in greenhouse. The results revealed that the growth traits such as plant height, root length, and biomass were significantly elevated during CHP14 treatment at 0 ∼ 8.0 mg·kg-1 Se(IV) levels. CHP14-inoculated plants accumulated more Se in root and shoot, which were 24.1%∼57.3% and 7.5%∼50.9% higher than those of non-inoculated plants. The contents of leaf nitrogen (N), phosphorus (P), magnesium (Mg), and iron (Fe), as well as the ratio of indoleacetic acid and abscisic acid contents (IAA/ABA) were increased by CHP14 inoculation, and positively associated with photosynthetic pigment contents (p < 0.05). At ≥ 4.0 mg·kg-1 Se(IV) levels, superoxide dismutase, peroxidase, and glutathione peroxidase activities of Pakchoi roots were increased with CHP14 inoculation, by 9.9%∼17.1%, 28.4%∼40.7%, and 7.4%∼15.3%, respectively. Moreover, CHP14 inoculation enhanced ascorbate-glutathione (AsA-GSH) metabolism in roots by upregulating the related enzymes activities and antioxidant contents under excess Se(IV) stress. These findings suggest that CHP14 is beneficial to improve plant growth and enhance Se(IV) resistance of Pakchoi, and can be exploited as potential inoculants for phytoremediation process in Se contaminated soil.
期刊介绍:
The International Journal of Phytoremediation (IJP) is the first journal devoted to the publication of laboratory and field research describing the use of plant systems to solve environmental problems by enabling the remediation of soil, water, and air quality and by restoring ecosystem services in managed landscapes. Traditional phytoremediation has largely focused on soil and groundwater clean-up of hazardous contaminants. Phytotechnology expands this umbrella to include many of the natural resource management challenges we face in cities, on farms, and other landscapes more integrated with daily public activities. Wetlands that treat wastewater, rain gardens that treat stormwater, poplar tree plantings that contain pollutants, urban tree canopies that treat air pollution, and specialized plants that treat decommissioned mine sites are just a few examples of phytotechnologies.