Tong-sheng Zhou , Chun-lan Yang , Jie-quan Wang , Ling Fang , Quan Xia , Ya-ru Liu
{"title":"鉴定血清外泌体 lncRNA 及其对类风湿性关节炎成纤维细胞样滑膜细胞特征基因的潜在调控。","authors":"Tong-sheng Zhou , Chun-lan Yang , Jie-quan Wang , Ling Fang , Quan Xia , Ya-ru Liu","doi":"10.1016/j.intimp.2024.113382","DOIUrl":null,"url":null,"abstract":"<div><div>Rheumatoid arthritis (RA) is a common autoimmune disease whose pathogenesis is poorly understand. Gaps in laboratory biomarkers cause a lack of clinically available strategies for the early diagnosis and treatment of RA. This study aims to identify serum exosomal lncRNAs as promising biomarkers and to unravel potential mechanisms by which they affect characteristic genes of fibroblast-like synoviocytes (FLSs) to induce RA malignant properties. RNA sequencing datasets of serum exosomes (GSE271161 and PRJNA911001) and FLSs (GSE103578, GSE122616, GSE128813, GSE181614 and GSE83147) were purposively mined. Visualization and functional enrichment of differentially expressed (DE) lncRNAs/protein-coding genes, screening of significant lncRNAs, and construction of competing endogenous RNAs (ceRNAs) and protein–protein interaction (PPI) network were carried out. Quantitative real-time PCR, receiver operating characteristic curve (ROC) and correlation analysis were conducted on the validation cohort. As a result, we screened a total of 131 serum exosomal DElncRNAs and 125 FLSs DEmRNAs, which were predominantly enriched in the proliferative, inflammatory and metabolic pathways. In-depth learning of DElncRNAs expression profiles was performed to identify models with better performance and lncRNAs with higher importance scores using 4 machine learning algorithms (SVM, KNN, RF, Logit), which led to the establishment of ceRNAs network linking serum exosomal lncRNAs and characteristic genes of FLSs. In short, we proposed that 4 RA-representative serum exosomal lncRNAs (DLEU2, FAM13A-AS1, MEG3 and SNHG15) may be applied as valuable indicators for laboratory tests, and their-mediated intercellular communication and ceRNAs network may regulate the characteristic genes of FLSs, thereby generating malignant phenotypes and adaptive synovial microenvironment in RA.</div></div>","PeriodicalId":13859,"journal":{"name":"International immunopharmacology","volume":"143 ","pages":"Article 113382"},"PeriodicalIF":4.7000,"publicationDate":"2024-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identification of serum exosomal lncRNAs and their potential regulation of characteristic genes of fibroblast-like synoviocytes in rheumatoid arthritis\",\"authors\":\"Tong-sheng Zhou , Chun-lan Yang , Jie-quan Wang , Ling Fang , Quan Xia , Ya-ru Liu\",\"doi\":\"10.1016/j.intimp.2024.113382\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Rheumatoid arthritis (RA) is a common autoimmune disease whose pathogenesis is poorly understand. Gaps in laboratory biomarkers cause a lack of clinically available strategies for the early diagnosis and treatment of RA. This study aims to identify serum exosomal lncRNAs as promising biomarkers and to unravel potential mechanisms by which they affect characteristic genes of fibroblast-like synoviocytes (FLSs) to induce RA malignant properties. RNA sequencing datasets of serum exosomes (GSE271161 and PRJNA911001) and FLSs (GSE103578, GSE122616, GSE128813, GSE181614 and GSE83147) were purposively mined. Visualization and functional enrichment of differentially expressed (DE) lncRNAs/protein-coding genes, screening of significant lncRNAs, and construction of competing endogenous RNAs (ceRNAs) and protein–protein interaction (PPI) network were carried out. Quantitative real-time PCR, receiver operating characteristic curve (ROC) and correlation analysis were conducted on the validation cohort. As a result, we screened a total of 131 serum exosomal DElncRNAs and 125 FLSs DEmRNAs, which were predominantly enriched in the proliferative, inflammatory and metabolic pathways. In-depth learning of DElncRNAs expression profiles was performed to identify models with better performance and lncRNAs with higher importance scores using 4 machine learning algorithms (SVM, KNN, RF, Logit), which led to the establishment of ceRNAs network linking serum exosomal lncRNAs and characteristic genes of FLSs. In short, we proposed that 4 RA-representative serum exosomal lncRNAs (DLEU2, FAM13A-AS1, MEG3 and SNHG15) may be applied as valuable indicators for laboratory tests, and their-mediated intercellular communication and ceRNAs network may regulate the characteristic genes of FLSs, thereby generating malignant phenotypes and adaptive synovial microenvironment in RA.</div></div>\",\"PeriodicalId\":13859,\"journal\":{\"name\":\"International immunopharmacology\",\"volume\":\"143 \",\"pages\":\"Article 113382\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International immunopharmacology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1567576924019040\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International immunopharmacology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1567576924019040","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
Identification of serum exosomal lncRNAs and their potential regulation of characteristic genes of fibroblast-like synoviocytes in rheumatoid arthritis
Rheumatoid arthritis (RA) is a common autoimmune disease whose pathogenesis is poorly understand. Gaps in laboratory biomarkers cause a lack of clinically available strategies for the early diagnosis and treatment of RA. This study aims to identify serum exosomal lncRNAs as promising biomarkers and to unravel potential mechanisms by which they affect characteristic genes of fibroblast-like synoviocytes (FLSs) to induce RA malignant properties. RNA sequencing datasets of serum exosomes (GSE271161 and PRJNA911001) and FLSs (GSE103578, GSE122616, GSE128813, GSE181614 and GSE83147) were purposively mined. Visualization and functional enrichment of differentially expressed (DE) lncRNAs/protein-coding genes, screening of significant lncRNAs, and construction of competing endogenous RNAs (ceRNAs) and protein–protein interaction (PPI) network were carried out. Quantitative real-time PCR, receiver operating characteristic curve (ROC) and correlation analysis were conducted on the validation cohort. As a result, we screened a total of 131 serum exosomal DElncRNAs and 125 FLSs DEmRNAs, which were predominantly enriched in the proliferative, inflammatory and metabolic pathways. In-depth learning of DElncRNAs expression profiles was performed to identify models with better performance and lncRNAs with higher importance scores using 4 machine learning algorithms (SVM, KNN, RF, Logit), which led to the establishment of ceRNAs network linking serum exosomal lncRNAs and characteristic genes of FLSs. In short, we proposed that 4 RA-representative serum exosomal lncRNAs (DLEU2, FAM13A-AS1, MEG3 and SNHG15) may be applied as valuable indicators for laboratory tests, and their-mediated intercellular communication and ceRNAs network may regulate the characteristic genes of FLSs, thereby generating malignant phenotypes and adaptive synovial microenvironment in RA.
期刊介绍:
International Immunopharmacology is the primary vehicle for the publication of original research papers pertinent to the overlapping areas of immunology, pharmacology, cytokine biology, immunotherapy, immunopathology and immunotoxicology. Review articles that encompass these subjects are also welcome.
The subject material appropriate for submission includes:
• Clinical studies employing immunotherapy of any type including the use of: bacterial and chemical agents; thymic hormones, interferon, lymphokines, etc., in transplantation and diseases such as cancer, immunodeficiency, chronic infection and allergic, inflammatory or autoimmune disorders.
• Studies on the mechanisms of action of these agents for specific parameters of immune competence as well as the overall clinical state.
• Pre-clinical animal studies and in vitro studies on mechanisms of action with immunopotentiators, immunomodulators, immunoadjuvants and other pharmacological agents active on cells participating in immune or allergic responses.
• Pharmacological compounds, microbial products and toxicological agents that affect the lymphoid system, and their mechanisms of action.
• Agents that activate genes or modify transcription and translation within the immune response.
• Substances activated, generated, or released through immunologic or related pathways that are pharmacologically active.
• Production, function and regulation of cytokines and their receptors.
• Classical pharmacological studies on the effects of chemokines and bioactive factors released during immunological reactions.