{"title":"利用孟德尔随机分析鉴定治疗炎症性肠病的潜在新靶点。","authors":"Ji-Chang Fan, Yuan Lu, Jin-Heng Gan, Hao Lu","doi":"10.1007/s00384-024-04744-2","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Inflammatory bowel disease (IBD) is a complex autoimmune disorder, although some medications are available for its treatment. However, the long-term efficacy of these drugs remains unsatisfactory. Therefore, there is a need to develop novel drug targets for IBD treatment.</p><p><strong>Methods: </strong>We conducted two-sample Mendelian randomization (MR) analysis using Genome-Wide Association Study (GWAS) data to assess the causal relationships between plasma proteins and IBD and its subtypes. Subsequently, the presence of shared genetic variants between the identified plasma proteins and traits was explored using Bayesian co-localization. Phenome-wide MR was used to evaluate evaluated adverse effects, and drug target databases were examined for therapeutic potential.</p><p><strong>Results: </strong>Using the Bonferroni correction (P < 3.56e-05), 17 protein-IBD pairs were identified. Notably, the genetic associations of IBD shared a common variant locus (PP.H4 > 0.7) with five proteins (MST1, IL12B, HGFAC, FCGR2A, and IL18R1). As a subtype of IBD, ulcerative colitis shares common variant loci with FCGR2A, IL12B, and MST1. In addition, we found that ANGPTL3, IL18R1, and MST1 share a common variant locus with Crohn's disease. Furthermore, phenome-wide MR analysis revealed that except for ANGPTL3, no other proteins showed potential adverse effects. In the drug database, identified plasma proteins such as FCGR2A and IL18R1 were found to be potential drug targets for the treatment of IBD and its subtypes.</p><p><strong>Conclusion: </strong>Six proteins (FCGR2A, IL18R1, MST1, HGFAC, IL12B, and ANGPTL3) were identified as potential drug targets for the treatment of IBD and its subtypes.</p>","PeriodicalId":13789,"journal":{"name":"International Journal of Colorectal Disease","volume":"39 1","pages":"165"},"PeriodicalIF":2.5000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11485038/pdf/","citationCount":"0","resultStr":"{\"title\":\"Identification of potential novel targets for treating inflammatory bowel disease using Mendelian randomization analysis.\",\"authors\":\"Ji-Chang Fan, Yuan Lu, Jin-Heng Gan, Hao Lu\",\"doi\":\"10.1007/s00384-024-04744-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Inflammatory bowel disease (IBD) is a complex autoimmune disorder, although some medications are available for its treatment. However, the long-term efficacy of these drugs remains unsatisfactory. Therefore, there is a need to develop novel drug targets for IBD treatment.</p><p><strong>Methods: </strong>We conducted two-sample Mendelian randomization (MR) analysis using Genome-Wide Association Study (GWAS) data to assess the causal relationships between plasma proteins and IBD and its subtypes. Subsequently, the presence of shared genetic variants between the identified plasma proteins and traits was explored using Bayesian co-localization. Phenome-wide MR was used to evaluate evaluated adverse effects, and drug target databases were examined for therapeutic potential.</p><p><strong>Results: </strong>Using the Bonferroni correction (P < 3.56e-05), 17 protein-IBD pairs were identified. Notably, the genetic associations of IBD shared a common variant locus (PP.H4 > 0.7) with five proteins (MST1, IL12B, HGFAC, FCGR2A, and IL18R1). As a subtype of IBD, ulcerative colitis shares common variant loci with FCGR2A, IL12B, and MST1. In addition, we found that ANGPTL3, IL18R1, and MST1 share a common variant locus with Crohn's disease. Furthermore, phenome-wide MR analysis revealed that except for ANGPTL3, no other proteins showed potential adverse effects. In the drug database, identified plasma proteins such as FCGR2A and IL18R1 were found to be potential drug targets for the treatment of IBD and its subtypes.</p><p><strong>Conclusion: </strong>Six proteins (FCGR2A, IL18R1, MST1, HGFAC, IL12B, and ANGPTL3) were identified as potential drug targets for the treatment of IBD and its subtypes.</p>\",\"PeriodicalId\":13789,\"journal\":{\"name\":\"International Journal of Colorectal Disease\",\"volume\":\"39 1\",\"pages\":\"165\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11485038/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Colorectal Disease\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s00384-024-04744-2\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GASTROENTEROLOGY & HEPATOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Colorectal Disease","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00384-024-04744-2","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GASTROENTEROLOGY & HEPATOLOGY","Score":null,"Total":0}
Identification of potential novel targets for treating inflammatory bowel disease using Mendelian randomization analysis.
Background: Inflammatory bowel disease (IBD) is a complex autoimmune disorder, although some medications are available for its treatment. However, the long-term efficacy of these drugs remains unsatisfactory. Therefore, there is a need to develop novel drug targets for IBD treatment.
Methods: We conducted two-sample Mendelian randomization (MR) analysis using Genome-Wide Association Study (GWAS) data to assess the causal relationships between plasma proteins and IBD and its subtypes. Subsequently, the presence of shared genetic variants between the identified plasma proteins and traits was explored using Bayesian co-localization. Phenome-wide MR was used to evaluate evaluated adverse effects, and drug target databases were examined for therapeutic potential.
Results: Using the Bonferroni correction (P < 3.56e-05), 17 protein-IBD pairs were identified. Notably, the genetic associations of IBD shared a common variant locus (PP.H4 > 0.7) with five proteins (MST1, IL12B, HGFAC, FCGR2A, and IL18R1). As a subtype of IBD, ulcerative colitis shares common variant loci with FCGR2A, IL12B, and MST1. In addition, we found that ANGPTL3, IL18R1, and MST1 share a common variant locus with Crohn's disease. Furthermore, phenome-wide MR analysis revealed that except for ANGPTL3, no other proteins showed potential adverse effects. In the drug database, identified plasma proteins such as FCGR2A and IL18R1 were found to be potential drug targets for the treatment of IBD and its subtypes.
Conclusion: Six proteins (FCGR2A, IL18R1, MST1, HGFAC, IL12B, and ANGPTL3) were identified as potential drug targets for the treatment of IBD and its subtypes.
期刊介绍:
The International Journal of Colorectal Disease, Clinical and Molecular Gastroenterology and Surgery aims to publish novel and state-of-the-art papers which deal with the physiology and pathophysiology of diseases involving the entire gastrointestinal tract. In addition to original research articles, the following categories will be included: reviews (usually commissioned but may also be submitted), case reports, letters to the editor, and protocols on clinical studies.
The journal offers its readers an interdisciplinary forum for clinical science and molecular research related to gastrointestinal disease.